

# IE Technical Elective – Reliability Engineering Spring 2025

## Course Syllabus

## Instructor

Changxi Wang, Ph.D.

Email: <u>changxi.wang@scupi.cn</u> Office: SCUPI Building N403/N407 Office Hours: Wednesday 12:00-15:00

## **Teaching Assistant**

TBD QQ Group (769139902)

## Lecture

Wednesday 8:15-11:00; Room: SCUPI Building N210

#### **Course Description**

Reliability introduction, System Reliability Evaluation, Time and Failure dependent Reliability, Estimation Methods of the parameters, 3 credit hours.

#### **Course Prerequisites**

IE 1070, MATH 0220, MATH 0235, MATH 0240

#### **Course Objectives**

1. Learn the basic definitions of reliability, basics of failure-time distributions, reliability metrics and methods for its calculations.

2. Learn to estimate the reliability of a variety of engineering systems using mathematical models.

3. Learn to use programming languages such as MATLAB to fit the failure data and estimate the parameters of the failure-time distributions.

4. Learn to understand failure causes and properly determine the optimal maintenance schedules in the real applications.

#### **Applicable ABET Outcomes**

Students will build

1. An understanding of the concept of reliability engineering and its applications.

2. An overview of simple failure-time distributions and the basics of reliability statistics such as mean time to failure (MTTF), mean residual life, median life, etc.

An understanding of good practices of reliability, and conversely recognizing failures and why.
Skills in the use of tools such as MATLAB to fit the data and estimate parameters of real cases in Industrial Engineering.

#### Textbook

Elsayed A. Elsayed, Reliability Engineering, Third Edition. Wiley, (Wiley Series in Systems Engineering and Management), 2021, ISBN: 978-1-119-66592-2



<u>Dhillon B S.</u>, Engineering systems reliability, safety, and maintenance: an integrated approach [M]. CRC Press, 2017. ISBN 9781498781633

#### References

<u>Elsayed</u>, A. <u>Elsayed</u>, 可靠性工程(第 2 版), 出版社: 电子工业出版社, 2013 年 8 月, ISBN:9787121210211

#### Grading

Attendance, Quizzes & Assignment, projects, and exam questions related specifically to the objectives above.

| Attendance, Quizzes | 20%        |
|---------------------|------------|
| Assignment:         | 30%        |
| Project:            | 25%        |
| Final Examination:  | <u>25%</u> |
|                     | 100%       |

| Score        | Letter Grade |
|--------------|--------------|
| 90.00-100.00 | А            |
| 85.00-89.99  | A-           |
| 80.00-84.99  | B+           |
| 76.00-79.99  | В            |
| 73.00-75.99  | B-           |
| 70.00-72.99  | C+           |
| 66.00-69.99  | С            |
| 63.00-65.99  | C-           |
| 61.00-62.99  | D+           |
| 60.00-60.99  | D            |
| 0.00-59.99   | F            |

#### Exams

There will be one final exam. The exam is OPEN BOOK, OPEN NOTES. You are allowed to bring any material you need in the exam.

#### **Assignments and Quizzes**

Homework will be assigned weekly and needed to be finished before the next class. You are encouraged to work on these assignments with your classmates. Late submission will not be accepted. Homework solutions must be submitted to the Blackboard system.

Quizzes may be assigned during the classes. There is a time limit on the quiz. Late submissions will not be accepted. No make-up quizzes or in-class activities are allowable except under extenuating circumstances.



## **Course Project**

The project topic will be given later in the course.

#### **Avoiding Plagiarism**

- 1. Unacknowledged direct copying from the work of another person, or the close paraphrasing of somebody else's work, is called plagiarism and is a serious offence, equated with cheating in examinations. This applies to copying both from other students' work and from published sources such as books, reports or journal articles.
- 2. Paraphrasing, when the original statement is still identifiable and has no acknowledgement, is plagiarism. A close paraphrase of another person's work must have an acknowledgement to the source. It is not acceptable for you to put together unacknowledged passages from the same or from different sources linking these together with a few words or sentences of your own and changing a few words from the original text: this is regarded as over-dependence on other sources, which is a form of plagiarism.



| Lecture | Week | Dates    | Topics                                                     | Chapter |
|---------|------|----------|------------------------------------------------------------|---------|
| 1       | 1    | Feb 26   | Course Introduction and Review of Syllabus,                | 1       |
|         |      |          | Introduction to Reliability Engineering, Reliability       |         |
|         |      |          | Definition                                                 |         |
| 2       | 2    | March 5  | Probability Distributions Review, Mean time to failure,    | 1       |
|         |      |          | Mean residual life, Time of first failure                  |         |
| 3       | 3    | March 12 | Introduction to System Reliability Evaluation, Reliability | 2       |
|         |      |          | Block Diagrams                                             |         |
| 4       | 4    | March 19 | Experiments                                                | 2       |
| 5       | 5    | March 26 | Series Systems, Parallel Systems, Series-Parallel Systems, | 2       |
|         |      |          | Parallel-Series Systems, Mixed Systems                     |         |
| 6       | 6    | April 2  | Reliability Evaluation of k-out-of-n Systems               | 2       |
| 7       | 7    | April 9  | Complex System Reliability Analysis                        | 2       |
| 8       | 8    | April 16 | Redundancy, Importance measures of components              | 1,2     |
| 9       | 9    | April 23 | Time-Dependent Reliability                                 | 3       |
| 10      | 10   | April 30 | Degradation Models                                         | 3       |
| 11      | 11   | May 7    | Project Mid-term/Proposal Presentation                     |         |
| 12      | 12   | May 14   | Degradation Models                                         | 4       |
|         |      |          | Failure-Dependent Reliability                              |         |
| 13      | 13   | May 21   | Parameters Estimation 1: Method of Moments,                | 4       |
|         |      |          | Parameters Estimation 2: The Likelihood Function           |         |
| 14      | 14   | May 28   | Parameters Estimation 3: Method of Least Squares,          | 4       |
|         |      |          | Bayesian Approach                                          |         |
|         | 15   | June 4   | Project Presentation                                       |         |
| 15      | 16   | June 11  | Final Exam Review                                          | 1,2,3,4 |
|         | 17   | June 18  | Final Exam                                                 | 1,2,3,4 |

## **Tentative Course Schedule**