<+ MATH_0480(Applied Discrete Mathematics)?)
Instructor : Jeungphill Hanne

< Agenda for today

1. SCUPI 2024 Fall Academic Calendar
 Academic Calendar : Midterms & Final etc.

* My Schedule : Office hours etc.

2. Course Introduction
 Course information
- Subject, Text book, Lecture Hour, Office hour, Course website, etc.
» Course Objective & Scope, Course Learning Key Points
» Course Grading & Tentative Course Schedule

3. A bit Closer look on the Discrete Mathematics
* Briefly addressed by the key topics

1) : Recent curricular recommendations from The Institute for Electrical and Electronic Engineers
Computer Society (IEEE-CS) and the Association for Computing Machinery (ACM) include discrete
mathematics as the largest portion of “core knowledge” for computer science students and state that
students should take at least a one-semester course in the subject as part of their first-year studies,
with a two-semester course preferred when possible. (From the textbook)




1. SCUPI 2024 Fall Academic Calendar

« Academic Calendar : Two Midterms & Final etc.

SCUPI Academic Calendar for 2024-2025 Fall

Aug. Sep. Oct. Nov. Dec. Jan. Feb.
Monday 26 | 2 9 16 | 23| 30 | 7 14| 21| 28] 4 11| 18 | 25| 2 9 16 | 23 | 30| 6 13120 27| 3 10 | 17 | 24
Tuesday 271 3 10 | 17 | 24 1 8 15122129 5 12119 26| 3 10 | 17 | 24 | 31 7 14| 21 | 28 | 4 11 | 18 | 25
Wednesday | 28 | 4 11 18| 25| 2 9 16 | 23 1 30 | 6 13120 27| 4 11 ] 18 | 25 1 8 1512229 5 121 19 | 26
Thursday 291 5 12119 2| 3 10| 17 | 24 | 31 7 14121 28| 5 121 19| 26| 2 9 16 | 23 | 30 | 6 13 | 20 | 27
Friday 30| 6 13120 (27| 4 11 | 18 | 25 1 8 15122 29] 6 13120 27| 3 10 | 17 | 24 | 31 7 14 | 21 | 28
Saturday 31 7 14 1 21 [ 28| 5 12| 19| 26| 2 9 16 | 23 | 30 | 7 14 | 21 | 28 | 4 11 | 18 | 25 1 8 15 | 22 1
Sunday 1 8 15122 29| 6 13120 27| 3 10| 17 | 24 1 8 1512229 5 12 19| 26 | 2 9 16 | 23 2
SCU Week 0 1 2 3 4 5 7 8 9 10 | 11 13 |14 | 15| 16 | 17 | 18 | 19 A 20 | 21 | 22 | 23 | 24 [ 25 | 26
SCU Term ’/ ' 2024 Fall Teaching Weeks Final Weeks Winter Recess
1st Midterm 2nd Midterm Final

This schedule is preliminary!!




1. SCUPI 2024 Fall Academic Calendar

My Schedule : Office hours etc.

2024-2025 Fall Semester Course Schedule

Class time Monday Tuesday Wednesday Thursday Friday
08:15-09:00 Teaizylzluclsg ?L-(,)AS6O3

09:10-09:55 Tealj::y;luclz :;-0A5603

10:15-11:00 Teazzyéff; 1135603 P?lf;SCiESH; o5

11:10-11:55 Tealj::y;flz i-(f603 AppIi(?dfflljcizcl_|r2'tjer Math

Lunch Break

13:50-14:35 | APPIeC [g),l_i%gate et Appngﬂ[;chthuer Math
14-45.15:30 | Applied g_liggete Math P?]f;'sciis"'ilé;
15:40.16:05 | Applied g-lzng;ete Math Fif;lsciisH(Z)L(I)rl
16:45-17:30 Phy;_'iglz 01 Phyg-l(l:zlz o
17:40-18:25 Phy;_'(l:cs)lz o1 Phyi.'izf o

But, you can come to my office anytime when | am in my office ™




2. Course Introduction

e Course information

* Applied Discrete Mathematics(MATHO0480)
» Text Book

- Discrete Mathematics with Applications Susanna S.Epp
by Susanna S. Epp, 4th edition Discrete Mathematics
. ISBN-13: 978-0-495-39132-6, ISBN-10: 0-495-39132-8 Wlth Applications

- Hand outs (for Discrete Optimization)
* Lecture
- Instructor : Jeungphill Hanne, PhD
jeungphill.hanne@scupi.cn
- Time : Please refer to my schedule
- Office Hour: Wed(13:50-14:35), & Thr(11:10
-11:55)
- Office : 412@New Building, Jiang’an South
* TA : Hanven Liu
- Office Hrs : To be announced.
* Course Format
- Lecture, and Active Participation (i.e. Quiz,
Question, Answers, etc.)
» Course Grading
- Two Midterms, Final, Homework, Quiz, and I
Attitude (ex. Attendance, Focus, Class Engagement, Punctuality for HW, etc.)



mailto:jeungphill.hanne@scupi.cn

2. Course Introduction

* Course Scope & Objective

- Objective : To introduce the important discrete structures that appear in both pure and applied math
as well as computer science, computer engineering, computer security and information
systems, and thereby be able to offer the mathematical foundations on "Computer
programming” while giving an glimpse on how it is originated from “Computer
architecture” . In addition, this course is an excellent preparation for classes in
Combinatorics, Graph Theory, Algebra and Number Theory.

- Topics or Scope :
* Logics of the Statements
» Basic Number theory & Mathematical proof
» Sequence & Mathematical Induction
 Sets, Functions & Growth of Functions
» Courting & Discrete Probability
» Graphs, Trees & Discrete geometry
 Analysis of Algorithm Efficiency
* Introduction on Discrete Optimization(Algorithms& Complexity, Network flows, Traveling Salesperson
Problem, Revisited(Minimum spanning trees & Shortest path), the Knapsack problem etc.)

« Course Grading :

- Grading : HW+ Quiz (15~20%), Midterm | (25%), Midterm Il (25%), Final (25%) and
Attitude(5~10% : Attendance, Focus, Class Engagement (i.e. work on “practice problems”),
Punctuality for HW, etc.)

- Less than 60% attendance might be failed for the course! Can be ﬂ@lele!




* Tentative Course Schedule

Week MATH_0408(ADM) Topics Assignment
Week 1 (9/2-9/8) Introduction & Chap 1 Syllabus, Overview & Mathematical
Languages
Week 2 (9/9-9/15) Chap 2 The Logic of Compound Statements HW2
Week 3 (9/16-9/22) Chap 2 & Chap3 The Logic of Quantified Statements
Week 4 (9/23-9/29) Chap 3 & Chap 4 Elementary Number Theory HW3
and Methods of Proof
Week 5 (9/30-10/6) Chap 4 HW4
Week 6 (10/7-10/13) Chap 5 & Mid Term 1 Sequences, Mathematical Induction,
and Recursion

Week 7 (10/14-10/20) Chap 5 HWS5
Week 8 (10/21-10/27) Chap 6 Set Theory HW6

Week 9 (10/28-11/3) Chap 7 Functions HW7
Week 10 (11/4-11/10) Chap 8 Relations HWS8
Week 11 (11/11-11/17) Chap 8 & Chap 9 Counting and Probability
Week 12 (11/18-11/24) Review & Mid Term 2 |
Week 13 (11/25-12/1) Chap 9 __:- i VG 1re7s7=" HW9

Week 14 (12/2-12/8) Chap 10 I Graphs and Trees
Week 15 (12/9-12/15) Chap 10 & Chap 11 Analysis of Algorithm Efficiency HW10
Week 16 (12/16-12/22) Chap 11 HW11
Week 17 (12/23-12/29) Chap 12 Regular Expressions and Finite-State HW12

Automata

Week 18 (12/30-1/5) Handouts Discrete Optimization |

Week 19 (1/6-1/12) Handouts Discrete Optimization Il HW13

Week 20 (1/13-1/20) Final




3. A bit Closer look on the Discrete Mathematics
< by several topics

* Discrete Mathematical Structures

- Abstract structures describing, categorizing, and revealing the underlying relationships among
discrete mathematical objects, which can be mathematically better understood by the subjects such
as “ Set theory” , “ Logic & Boolean algebras”, “Functions”, Relations”, “Graphs and Trees”, etc.

< “Set” examples w/ Venn diagram > < Logic & Boolean expression>
. ~onclusic hypothesis
A ={m e Z | m = 2a for some integer a} | Chap 6 |* Logic conclusion ypothesis Chap 283 ‘
= {n e Z | n =2b— 2 for some integer b P q ~p ~q PV~ VY — ~p
T T F F T F
={meZ|m==6r+12forsomer € Z}
B 7 _ s, Z) T F F T T F
={n e Z|n =3s for some s € Z}. FT T = = -
B “ ] ed”..
«“Apstract group” for ... be categoriz F F T T T T

«“Tryth”. or “False” for ..., “\/arious types of Statements

U U ematical proof” in "Algorithm”

. TN One Foundation for “Math
{. Al B ] )
m X/ * Boolean expression

P —
/f \ \ Z:Integers e ’—/ AND
il Q R| : -
\\\\ X,/' / }%:Real numbers AND '
NS




3. A bit Closer look on the Discrete Mathematics
< by several topics

9 [ [
«Set” to “Set relation” | < wpelations” >| ChaP 8

Define a relation L from R to R as follows:

Chap 7 | < “Functions” >

f: R — R is the function defined by the rule

For all real numbers x and v.
f(x) =4x — 1 for all real numbers x. xLy&ox<y.
a 1s57L 532 b Is (—=17) L (—14)?

Let X ={1,3,5} and ¥V = {s,1, u, v}. Define f: X - ¥

h},r the following ArTOWwW diagram_ Sﬂlllliﬂl] a. No, 57 = 53 b. Yes., —17 < —14
“Relation”
X Y . e
’ ] N > < o pasic core for T
N —= | “Set”is aba - S - - — Y
A i Sl R s e T e
T~ 2 D,fferen?s 17/ ons” | | 2 L | | 2e e
-__"-—-_'*_:.__' v ! . 7 £ e a III | -hq'"'---_q______- : II| I'.. .III ""---_________ I". /
> \/ “Functions & \3 7;'________ '“:j"\‘:\.j /3% e fy
A Function - -
by an Arrow Diagram . .
- 8 Arrow Diagrams of Relations
Input Output Two Representations
P O R S of a Boolean Function e ( “;.
[ B 1 i - " s3
£ / '
] : 9 1 [ LD~ /
10 1 0 (1,1,00e— i
| (1,0, )e— \
1 & 4 1 | (1,0,000— < 'I
0o 1 1 0 | ©OLDe—] |
©,1,000— | | — /
o 1 0 1 \ ©,0,De—1 | _~
0 0 1 0 o0, 0).“;"%_- \_/ [}
0 0 o0 0 Moz N

(b) Hasse Diagrams Directed Graph of a Relation

—~
o0
~



3. A bit Closer look

< by several topics

< “Graphs” & “"Trees” >

on the Discrete Mathematics _

Set to Set relations

presentations” for

«“Pjctorial re
- “Possibility tree” I (Chap9)

“Graphs” seen in “Relation dia

grams ” (Chap 8), and “Trees” fo

; lied
: : ' operties and be app
Chap 10 = further investigated with their mathematics & prop
* Graphs "
Name | Past Partners Ana .f ; P’e"e
Ana Dan, Flo f-"\ Bev . .-"I
Bev Cai, Flo. Hal /[ \ [/
Cai Bev, Flo — B K C
Dan Ana, Ed Ill \ . .
Ed Dan, Hal Graph Version of Kénigsberg Map
F]p Cai, Bev, Ana
Gia | Hal Hamiltonian Circuits
Hal Gia, Ed, Bev, Ira
Ira Hal .

Flo

- Like “Pictorial connections

€4,

| | 1
Edge Endpoints k__,> b {]) g ; O O
° o ) e A= — 0 1 * Trees
[ {v2, v4} v [ ey a @ 11 O
e ol .| OO0 B
| . .
e (0] | : 20 > ircuit-free,
vy —>Can be connected to & connected Graphs

"Matrix representation”

V4




3. A bit Closer look on the Discrete Mathematics
< bv several tobics Application

- Combinatory and Discrete pirobabiiity
—> Combinatorics is the mathematics of counting and arranging objects, and probability is the study of laws
concerning the measurement of random or chance events. Discrete probability focuses on situations
involving discrete sets of objects, such as finding the likelihood of obtaining a certain number of heads
when an unbiased coin is tossed a certain number of times. Skills from them is used in almost every
discipline where mathematics is applied, from economics to biology, to computer science, to chemistry and
physics, to business management” (from the text book)

Chap 9
. Throwing the two dices » Possibility Trees
Winner of Winner of Winner of Winner of Winner of
game 1 game 2 game 3 game 4 game 5
A (A wins) A (A wins)

A

(A w i.l]\"

(B wins) B (B wins)

Start A

(A wins)

B (B wins)

(B wins)

) . The Outcomes of a Tournamen

Equally Likely Probability Formula
If § 1s a finite sample space in which all outcomes are equally likely and E 1s an >Subsequent events can be
event in S, then the probability of E, denoted P(E), 1s drawn b)/ a "Tree d/agrams”

the number of outcomes in E
P(E) =

the total number of outcomes in S



3. A bit Closer look on the Discrete Mathematics —
you nsS
< by several tOpICS Like “Appl:catlon for “Set’, Relations” & “Functio

* Pigeonhole case or principle

Pigeons Plgeunhnles
/ 1 N\ / \
/ L
3 o-—--';",“"'::_:____. T Ve I".
ll 4e = '/ >e2 |
. ‘ 1 .
II Te— - /"‘/ — 1 W |
\ 8 P !e" ____—l—"v.\.\—\_ :; ed f}
' Qe / N
N/
(b)
Represented by “Set” & “Functions
Probability of a General Union of Two Events Vf" o

If S 1s any sample space and A and B are any events in S, then -.
P(AUB) = P(A)+ P(B) — P(AN B). ||A—(A NB)|ANB|B-(ANB)

Can be expressed by “Set” property & diagram \




3. A bit Closer look on Discrete Mathematics
< by several subjects Chap 485

 Mathematical Reasoning & Mathematical Induction——

—> An exciting development of recent years has been the increased appreciation for the power and beauty
of “recursive thinking.” To think recursively means to address a problem by assuming that similar
problems of a smaller nature have already been solved and figuring out how to put those solutions
together to solve the larger problem. Such thinking is widely used in the analysis of algorithms, where
recurrence relations that result from recursive thinking often give rise to formulas that are

verified by mathematical induction (from the text-beok) ical proof” in "Algor ithm’’

Another
- “Algorithms” for computing=>sequential structures, or sometimes “recursive”

» Sequence Recursive relati Sequences in Computer Programming

An important data type in computer programming consists of finite sequences. In com-

1 1 1 . . ;
9 16 (1) mp=2 puter programming contexts, these are usually referred to as one-dimensional arrays. For
example, consider a program that analyzes the wages paid to a sample of 50 workers.
(— 1k (2y m=1 Such a program might compute the average wage and the difference between each indi-

vidual wage and the average. This would require that each wage be stored in memory for
retrieval later in the calculation. To avoid the use of entirely separate variable names for
all of the 50 wages, each is written as a term of a one-dimensional array:

WL, W[2], W[3]. ..., WI[50].

=kt 1) forallintegers k >
V4

Principle of Mathematical Induction

Let P(n) be a property that is defingd for integer

Note that the subscript labels are written inside square brackets. The reason is that until
elatively recently, it was impossible to type actual dropped subscripts on most computer

and let a be a fixed integer.
Suppose the following two statements are true:

: Recursively Defined Sets
1. P(a) is true.
I. BASE: A statement that certain objects belong to the set.
2. FOT all il]ngCl'.\' ‘ Z a, lf P(/\) l\ true then P(’\ -+ | ) l\ L II. RECURSION: A collection of rules indicating how to form new set objects from
those already known to be in the set.

Then the statement [II. RESTRICTION: A statement that no objects belong to the set other than those com-

ing from I and II.

for all integers n = a, P(n) .
Application: Correctness of Algorithms

1s true.



3. A bit Closer look on the Applied Discrete Mathematics
< by several topics

11
. Algorithms & Their Analysis -chap4. 5 & Chap

—> To solve a problem on a computer, it is necessary to find an algorithm or step-by-step sequence of
instructions for the computer to follow. Designing an algorithm requires an understanding of the
mathematics underlying the problem to be solved. Determining whether or not an algorithm is correct
requires a sophisticated use of mathematical induction. Calculating the amount of time or memory space
the algorithm will need in order to compare it to other algorithms that produce the same output requires
knowledge of combinatorics, recurrence relations, functions, and O-, -, and —notations (from the text book)

° EX) The Euclidean A!gorithm Algorithm 4.8.2 Euclidean Algorithm

thﬂ greatest common divisor of two il’ltEEEI'H- [Given two integers A and B with A = B = 0, this algorithm computes gcd(A, B). It is

N, " o

Let a and b be integers that are not both zero. The greatest common divisor of a 1. ged(a, b) = ged(b, r) ifa, b, q, and r are integers witha =b-q +rand0 =r < b.

and b, denoted ged(a, b), is that integer d with the following properties: 2. ged(a,0) = a.]
1. d is a common divisor of both @ and b. In other words,

dla and d|b.

Input: A, B [integers with A > B = 0]

Algorithm Body:
a:=A,b:=B,r:=B
[If b £ O, compute a mod b, the remainder of the integer division of a by b, and set r
equal to this value. Then repeat the process using b in place of a and r in place of b.|

while (b #£ 0)

r:=amodb

2. For all integers c, if ¢ is a common divisor of both a and b, then c is less than or
equal to d. In other words,

for all integers ¢, if ¢ |a and ¢ | b, thenc < d.

Lemma 4.8.1

Ifrisa pDSitiVﬂ integer, then gcd(r, 0)=r. [The value of a mod b can be obtained by calling the division algorithm. |
a:==b
Lemma 4.8.2 ho—r
If a and b are any integers not both zero, and if g and r are any integers such that end while
Z=Cden [After execution of the while loop, gcd(A, B) = a.]
then ecd :=a

ged(a, b) = gcd(b, r). Output: ged [a positive integer]




3. A bit Closer look on the Applied Discrete Mathematics

< by several topics
 Algorithms & Their Analysis

The analytic geometry of Descartes provides the foundation on the important subjects for an
analysis of “Algorithm efficiency”: ®, Q2, O, notations (from the text book)

! Chap 4, 5 & Chap 11

* Ex) Time Efficiency of an Algorithm

e Definition

e ®, Q, O, notations

Let A be an algorithm.

1. Suppose the number of elementary operations performed when A is executed for
an input of size n depends on n alone and not on the nature of the input data; say it
equals f(n).If f(n)1s ©(g(n)), we say that A is @ (g(n)) or A is of order g(n).

. Suppose the number of elementary operations performed when A is executed for
an input of size n depends on the nature of the input data as well as on n.

a. Let b(n) be the minimum number of elementary operations required to execute
A for all possible input sets of size n. If b(n) is ©(g(n)), we say that in the
best case, A is ©(g(n)) or A has a best-case order of g(n).

b. Let w(n) be the maximum number of elementary operations required to exe-
cute A for all possible input sets of size n. If w(n) 1s ©(g(n)), we say that in
the worst case, A is @(g(n)) or A has a worst-case order of g(n).

flx)is @(gix))

Table 11.3.1 Time Comparisons of Some Algorithm Orders

A Graph of Blg|
(x, Blg(x)]) Six)is Qiglx))
i Graph of |f|
(x, 1 f))
|
| |
| } Graph of Alg|
: | (x, Alg()
! ! filx)is O(g(x))
I |
| |
| |
1 | -
k x i

Let f and g be real-valued functions defined on the same set of nonnegative real
numbers. Then

1. f is of order at least g. written f(x) is R(g(x)), if, and only if, there exist a
positive real number A and a nonnegative real number a such that

for all real numbers x > a.

Alg(x)| = |f(x)]

2. f is of order at most g, written f(x) is O(g(x)), if, and only if, there exist a

Approximate Time to Execute f(n) Operations Assuming One Operation per Nanosecond*
[ n=10 n = 1,000 n = 100,000 n = 10,000,000
log, n 3.3 % 1077 sec 107% sec 1.7 x 107% sec 2.3 % 107% sec

n 1078 sec 107° sec 0.0001 sec 0.01 sec
nlog,n 3.3 % 1078 sec 107 sec 0.0017 sec 0.23 sec
n? 1077 sec 0.001 sec 10 sec 27.8 min
n’ 1076 sec 1 sec 11.6 days 31,688 yr
2n 1076 sec 34108 yr | 3.1 x 1076 yr | 2.9 x 1070107 yp

positive real number B and a nonnegative real number & such that

If()| = Blg(x)]

3. f is of order g, written f(x) is ®@(g(x)), if, and only if, there exist a positive real
number A, B, and a nonnegative real number k such that

Alg@)| < [f()] < Blgx)]

for all real numbers x > b.

for all real numbers x > k.

*one nanosecond = 10~ second




3. A bit Closer look on the Applied Discrete Mathematics
< by several topics “Hand outs’

 Algorithms Complexity & Discrete Optimization

—> For the complex algorithms, Discrete optimization is an “approach” to find the best
solution out of finite number of possibilities in a computationally efficient way. And here
will show the several examples for how some algorithms are optimized (modified from a
reference 2)

- Can be studied , or practiced through the examples (problems encountered),
as follows.

* Minimum spanning trees

» The Shortest Path problem

» Traveling Salesperson Problem

* Network flows ( Maximum flows, Min Cost flows, etc.)
» Optimal Matchings

* The Knapsack problem

* Integer Programming

* NP and NP-complete problem
* Matroid

“Discrete Optimization examples”

2) : Discrete Optimization, Spring 2020 , Thomas Rothvoss, University of Washington



Any question SO far?

aking ‘this course” for “what” ?

2 Why are We t

And let’s move on Chap 1!
“Speaking Mathematically”




% Chapter 1 Speaking Mathematically

1-1 Variables
1-2 The Languages of Sets

1-3 The Languages of Relations and Functions

» gnd we did last time

“Briefly introduced in the text booK '
- Will be studied |

n more detail later

& No HW this time!




e 1-1 Variables

1) Three Basic Mathematical Statements
- Statement : “"Expressed for something, some situation, .....

A universal statement says that.ra certain property is trueifor'all elements in a set. ,

— = — e - - -

(For example: All positive numbers are greater than zero.)

- Stated by “all”, “every”, any”... . notated by «V»

re=smsmsmsmsms=== ~ (- - -—-=-=-=-=-"=-=-"=-==== 1\
* _A conditional statement says thal if one thing is true!themsome other thing also hasi

—————— 4 —— i ————— — —— o o m—

to be true. (For example: If 378 is divisible by 18, then 378 is divisible by 6.)
P

Q
- Stated with “If P, (then) Q”, : notated by P> Q

e Existential statement

prime number that is even.) =

- Stated with “"There is...”, "There exist...”, "“some”, “has”, .... : notated by

In each of 8-13, fill in the blanks to rewrite the given statement.

9. For all equations E, if E is quadratic then E has at most two
real solutions.
a. All quadratic equations .

Every quadratic equation

If an equation is quadratic, then it ____ .

IftE  ,thenE .

For all quadratic equations E,

e a0 T

“3”




e 1-1 Variables

2) Mixed from the Basic Mathematical Statements

v P=>Q
 Universal Conditional Statements For all animals a, if a is a dog, then a is a mammal.

If an animal 1s a dog, then the animal is a mammal.
If a is a dog, then a is a mammal. For all dogs a, a 1s a mammal.

P > Q” : Implicit All dogs are mammals.

v =
« Universal Existential Statements  Every real number has an additive inverse.

- For all real numbers r, there is a real number s such that s is an additive inverse for r.

For all real numbers r. there 1s an additive inverse for r.
All real numbers have additive inverses.

= Y
o Existential Universal Statements

There is a positive integer that is less than or equal to every positive integer

Some positive integer 1s less than or equal to every positive integer.

There is a positive integer m that is less than or equal to every positive integer.
There 1s a positive integer m such that every positive integer 1s greater than or equal to m.

There is a positive integer m with the property that for all positive integers n, m < n.

- P> ? “Existential Conditional Statements




e 1-1 Variables
2) Mixed from the Basic Mathematical Statements

Example 1.1.2 Rewriting a Universal Conditional Statement

Fill in the blanks to rewrite the following statement:
For all real numbers x, if x is nonzero then x? is positive.
a. If a real number is nonzero, then its square
b. For all nonzero real numbers x,
c. Ifx  .then .
d. The square of any nonzero real numberis

e. All nonzero real numbers have

Example 1.1.3 Rewriting a Universal Existential Statement

Fill in the blanks to rewrite the following statement: Every pot has a lid.
a. All pots :
b. For all pots P, there 1s :

c. For all pots P, there 1s a lid L such that :




e 1-1 Variables

2) Mixed from the Basic Mathematical Statements
Example 1.1.4 Rewriting an Existential Universal Statement

Fill in the blanks to rewrite the following statement in three different ways:

There is a person in my class who is at least as old as every person in my class.
a. Some  isatleastasoldas
b. There is a person p in my class such that p1s

¢. There is a person p in my class with the property that for every person g in my class,
pis :

istential Universal Conditional Statements

. 3 v P=2Q All mixed w/ “EX

- Ex) Definition of a mathematical “limit” of a sequence “a,” : lim a,, = L

n—->0o
if ai, a2, as, ... 1s a sequence of real numbers, the limit of a, as n approaches infinity is L

A

Voo

for all .rED_si_ti_w_:nl{e_al_Ilu_nlh_e[ﬁ e, there is an.i_n[eggr:ﬁ’ such that : “maybe Difficult,
for all integers n, ifn > N then —¢ <a, — L < &. but a very solid definition”
Y ‘l' So, need to “Think” & “Understand

“More used by the mathematical notations

| | : Also needed to be defined “mathematically”




Any question?

So, in the next time
Start with Chap 2,

«The Logic of Compound Statements”
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