Semester Course ID Course Title	Spring 2024 Technical Elective Application of Finite Element Analysis (FEA) for Mechanical Design
Instructor	Professor Ping C. Sui, Ph.D. Office: 4-222 E-mail: ping.sui@scupi.cn
Teaching Assistant	Yiwei Cheng E-mail: 2020141520173@stu.scu.edu.cn
Office Hours	Wednesday 13:00-17:00 Thursday 13:00-17:00
Lecture Time Lecture Room	Wednesday 8:15-11:00 Zone 3-105
Prerequisites	Engr 0135 Statics and Mechanics of Materials 1 Engr 0145 Statics and Mechanics of Materials 2 ME1028 Mechanical Design 1 (Recommended)
References	Daryl L. Logan (2012) A First Course in the Finite Element Method. Cengage Learning, 5 th Edition.
	ANSYS Workbench User's Guide (https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/wb2_help /wb2_help.html%23wb2_help)
	ANSYS Mechanical User's Guide (https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/wb_sim/d s_Home.html)
	ANSYS Element Reference (https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/ans_elem /Hlp_E_LIBRARY.html)
Course Description	This course is a 3-credit hour class to apply ANSYSTM finite element analysis (FEA) in mechanical engineering analysis.
Course Objective	Provide students the knowledge of applying finite element analysis (FEA) technique in structural analysis of mechanical components.
	Train students to develop the technical rigor and professional discipline of using FEA to assess the failure risks of a mechanical component.
Course Outcome	 Students will develop the following technical skills: hands-on training of using ANSYSTM Mechanical for structural analysis, discussions of validity of the developed FEA models, and interpretation of FEA analysis results, and risk assessment against presumed failure modes.

Week	Date	Course Outline	In-Class Exercise/Workshop	Homework/Assignment

1	Feb 28	00. Course Introduction				
2	Mar 06	01. Discrete Model for FiniteElement Analysis02. Introduction of ANSYSWorkbench (WB)	WS.01 Uniaxial Tensile Test	Reading Assignment 01 Reading Assignment 02 Lab Assignment 01		
3	Mar 13	02. Introduction of ANSYS Workbench (WB)	WS.01 Uniaxial Tensile Test	Lab Assignment 02		
4	Mar 20	03. ANSYS WB Mechanical Basics	WS.02 Rectangular Beam	Lab Assignment 03		
5	Mar 27	03. ANSYS WB Mechanical Basics (Reaction Probe for Force, Moment) 03B. Mirror Symmetry, Axial Symmetry	WS.03 Half-Model of Tensile Specimen In-Class Exercise 02 (Axi- symmetry Practice)	Lab Assignment 04 Compression Member		
Apr 0304. General Preprocessing/Post- processingV6(Holiday)processingVTBD03A. Failure AssessmentV		processing	WS04A Named Selection BCs WS04B Coordinate System (Radial Deformation) WS04C Coordinate System (Inclined Force) WS.04D Construct Geometry (Surface)	Lab Assignment 05 Triangular Plate		
7	Apr 10	Section Exam 01				
8	Apr 17	05. Mesh Control in ANSYS Mechanical	WS05A Flat Plat with Circular Hole 0501 Hex/Tet Mesh Control	Lab Assignment 06 Mesh Control		
9	Apr 24	06. Mesh Evaluation, Error Estimation and Convergence Check	WS.06A Arm Mesh WS.06C Fillet Stress Concentration	Lab Assignment 07		
10	May 01	06. Error Estimation and Stress Singularity	0601 2D Triangular Plate Simulation 0602 2D Simulation (Stress Concentration)	Lab Assignment 07		
11	May 08	LN07 Line Modeling for Beam Analysis	Workshop WS.07A	Lab Assignment 08		
12	May 15	LN08 Line Modeling for Truss Analysis Final Project Proposal Due	1001 2D Truss Analysis	Lab Assignment 09		
13	May 22	Section Exam 02				
14	May 29	08. Remote Displacement and Force	0901 Cantilever Beam	Lab Assignment 10		

			0801 Remote Force Behavior Control 0802 Beam Bending + Axial Tension	
15	Jun 05	09. Remote Displacement and Force 10. Connection Modeling Using Contacts	WS.09C Beam Analysis Using Remote BCs WS.10A Rod-Cylinder Contact	Lab Assignment 11
16	Jun 12	10. Connection Modeling UsingContacts13. Modal Analysis	1101 Bearing-Pin Contact Analysis 1102 Press-Fit Cylinders	Lab Assignment 12
17	Jun 19	Section Exam 03		
18	Jun 26	No Class		

In-Class Workshops	Hands-on practices assigned to students in class to promote discussions and keep students in-					
	sync with course material during lecturing					
Homework	Problem sets will be distributed each week after the class. Each problem set is designed to build					
	upon the material covered in the preceding lectures and recitations.					
	Homework assigned in a particular class is due at 8 AM on the day of the next class period,					
	unless otherwise posted.					
	Late HW will not be accepted.					
Exams	Three section exams given throughout the semester, which will be in-class and hands-on type					
	of testing to benchmark individual's proficiency in conducting a mechanical analysis using					
	ANSYS Mechanical.					
	All section exams will be comprehensive. No make-up will be given for the missing exam. Exams missed due to unpredictable events will					
	be dealt with on a case-by-case basis.					
Final Project	Each student will select a mechanical system of their own interest and work independently to					
	conduct structural analysis using the learned ANSYS knowledge.					
	Each student will submit a brief proposal to introduce the modeled system as well as to outline					
	their project objective, technical approach and expected outcome.					
	Tentative proposal deadline: May 15, 2024.					
	Final project will be graded per technical challenges of the modeled problem, modeling skills,					
	analysis details, and final report quality.					
Grades	Homework & Lab Assignments: 30%					
	Section Exams: 50%					
	Final Project: 20%					
	No make-up exam for the course					
	Letter grades will be assigned per following SCU scales:					

		等级成	战绩和T	百分成 A-	绩、绩 B+	点对照 B	表 B-	C+	с	C-	D+	D	F
	中2	中文等级		优秀		良好		中等		合格			不合格
	百	í 分制	100~90	89~85	84-80	79~76	75~73	72~70	69~66	65-63	62~61	60	<60
	\$	續点	4	3.7	3.3	3	2.7	2.3	2	1.7	1.3	1	0
lass Attendance	Students are expected to attend every class period. Early is on time, on time is late. As a courtesy to your fellow classmates, be punctual and arrive no later than the class starting time.												
Academic Honesty	All of u Studen work v All exa on an a of "F"	nts are when p ims ar assign	e perm prepar e to b ment	iitted ing a e com or exa	to disc proble pleted	cuss ho m solu l witho	omewo ution. out una	ork ass author	ignme ized a	ents to ssistar	gether nce. An	but s	should dent ca