
Syllabus for Intermediate Programming

Course name：Intermediate Programming Course code：312172040

Credits： Total class hours: 68

I. The nature and purpose of the course

Intermediate programming mainly explains the C language program

development methods. This course is an important foundation for computer science

and technology major. It is a basic course for students to establish their way of

thinking in computers and cultivate their practical ability by quickly mastering a

programming language. Through the study of intermediate programming course,

students are required to be proficient in programming development using C language,

familiar with the process of program development, and master the general methods of

program debugging, so as to lay a good foundation for the study of subsequent

courses.

II. Course training goal

1．Master the basic syntax and program structure of C language, the basic types

and operations of C language, the common statements and three control structures of

C language, and the basic usage of common library functions of C language.

2．Establish the thinking mode of program development, master the complete

process of program development, be able to carry out program design and code

implementation according to the actual needs, and can skillfully use array, pointer and

other complex data types to complete the modeling of practical problems.

3．Master some common algorithms, can be implemented with code and applied

to complex problems. Able to read the developed source code of a given function, and

understand the intent of the author, able to achieve error debugging and modification。

III. Basic content of course teaching

Chapters 1-10 cover the basic features of C, chapters 11-20 cover the advanced
features, and chapters 20-27 cover the C standard library. In the teaching content,
there are no requirements for the marks ** in chapters 1-18, 20, 22 and chapters 19,
21, 23-27. Students are advised to study by themselves according to their own
situation.

Chapter 1 INTRODUCING C

1.1 History of C

1.1.1 Origins

1.1.2 Standardization

1.1.3 C-Based Languages

1.2 Strengths and Weaknesses of C

1.2.1 Strengths

1.2.2 Weaknesses

1.2.3 Effective Use of C

Chapter 2 C FUNDAMENTALS

2.1 Writing a Simple Program

2.1.1 Compiling and Linking

2.1.2 Integrated Development Environments

2.2 The General Form of a Simple Program

2.2.1 Directives

2.2.2 Functions

2.2.3 Statements

2.2.4 Printing Strings

2.3 Comments

2.4 Variables and Assignment

2.4.1 Types

2.4.2 Declarations

2.4.3 Assignment

2.4.4 Printing the Value of a Variable

2.4.5 Initialization

2.4.6 Printing Expressions

2.5 Reading Input

2.6 Defining Names for Constants

2.7 Identifiers

2.8 Layout of a C Program

Chapter 3 FORMATTED INPUT/OUTPUT

3.1 The printf Function

3.1.1 Conversion Specifications

3.1.2 Escape Sequences

3.2 The scanf Function

3.2.1 How scanf Works

3.2.2 Ordinary Characters in Format Strings

3.2.3 Confusing printf with scanf

Chapter 4 EXPESSIONS

4.1 Arithmetic Operators

4.2 Assignment Operators

4.2.1 Simple Assignment

4.2.2 Left values

4.2.3 Compound Assignment

4.3 Increment and Decrement Operators

4.4 Expression Evaluation

4.5 Expression Statements

Chapter 5 SELECTION STATEMENTS

5.1 Logical Expressions

5.1.1 Relational Operators

5.1.2 Equality Operators

5.1.3 Logical Operators

5.2 The if Statement

5.2.1 Compound Statements

5.2.2 The else Clause

5.2.3 Cascaded if Statements

5.2.4 The “Dangling else” Problem

5.2.5 Conditional Expressions

5.2.6 Boolean Values in C89

5.2.7 Boolean Values in C99 **

5.3 The switch Statement

Chapter 6 LOOPS

6.1The while Statement

6.2 The do Statement

6.3 The for Statement

6.3.1 for Statement Idioms

6.3.2 Omitting Expressions in a for Statement

6.3.3 for Statement in C99 **

6.3.4 The Comma Operator

6.4 Exiting from a Loop

6.4.1 The break Statement

6.4.2 The continue Statement

6.4.3 The goto Statement **

6.5 The Null Statement

Chapter 7 BASIC TYPES

7.1 Integer Types

7.1.1 Integer Types in C99 **

7.1.2 Integer Constants

7.1.3 Integer Constants in C99 **

7.1.4 Integer Overflow

7.1.5 Reading and Writing Integers

7.2 Floating Types

7.2.1 Floating Constants

7.2.2 Reading and Writing Floating-Point Numbers

7.3 Character Types

7.3.1 Operations on Characters

7.3.2 Signed and Unsigned Characters

7.3.3 Arithmetic Types

7.3.4 Escape Sequences

7.3.5 Character-Handling Functions

7.3.6 Reading and Writing Characters using scanf and printf

7.3.7 Reading and Writing Characters using getchar and putchar

7.4 Type Conversion

7.4.1 The Usual Arithmetic Conversions

7.4.2 Conversions During Assignment

7.4.3 Implicit Conversions in C99 **

7.4.4 Casting

7.5 Type Definitions

7.5.1 Advantages of Type Definitions

7.5.2 Type Definitions and Portability

7.6 The sizeof Operator

Chapter 8 ARRAYS

8.1 One-Dimensional Arrays

8.1.1 Array Subscripting

8.1.2 Array Initialization

8.1.3 Designated Initializers

8.1.4 Using the sizeof Operator with Arrays

8.2 Multidimensional Arrays

8.2.1 Initializing a Multidimensional Array

8.2.2 Constant Arrays

8.3 Variable-Length Arrays (C99) **

Chapter 9 FUNCTIONS

9.1 Defining and Calling Functions

9.1.1 Function Definitions

9.1.2 Function Calls

9.2 Function Declarations

9.3 Arguments

9.3.1 Argument Conversions

9.3.2 Array Arguments

9.3.3 Variable-Length Array Parameters **

9.3.4 Using static in Array Parameter Declarations **

9.3.5 Compound Literals

9.4 The return Statement

9.5 Program Termination

9.6 Recursion

Chapter 10 PROGRAM ORGANIZATION

10.1 Local Variables

10.1.1 Static Local Variables

10.1.2 Parameters

10.2 External Variables

10.2.1 Example: Using External Variables to Implement a Stack

10.2.2 Pros and Cons of External Variables

10.3 Blocks

10.4 Scope

10.5 Organizing a C Program

Chapter 11 POINTERS

11.1 Pointer Variables

11.2 The Address and Indirection Operators

11.2.1 The Address Operator

11.2.2 The Indirection Operator

11.3 Pointer Assignment

11.4 Pointers as Arguments

11.5 Pointers as Return Values

Chapter 12 POINTERS ANDARRAYS

12.1 Pointer Arithmetic

12.1.1 Adding an Integer to a Pointer

12.1.2 Subtracting an Integer from a Pointer

12.1.3 Subtracting One Pointer from Another

12.1.4 Comparing Pointers

12.1.5 Pointers to Compound Literals

12.2 Using Pointers for Array Processing

12.3 Using an Array Name as a Pointer

12.3.1 Array Arguments

12.3.2 Using a Pointer as an Array Name

12.4 Pointers and Multidimensional Arrays

12.4.1 Processing the Elements if a Multidimensional Array

12.4.2 Processing the Rows of a Multidimensional Array

12.4.3 Processing the Columns of a Multidimensional Array

12.4.4 Using the Name of a Multidimensional Array as a Pointer

12.5 Pointers and Variable-Length Arrays (C99)**

Chapter 13 STRINGS

13.1 String Literals

13.1.1 Escape Sequences in String Literals

13.1.2 Continuing a String Literal

13.1.3 How String Literals Are Stored

13.1.4 Operations on String Literals

13.1.5 String Literals versus Character Constants

13.2 String Variables

13.2.1 Initializing a String Variable

13.2.2 Character Arrays versus Character Pointers

13.3 Reading and Writing Strings

13.3.1 Writing Strings Using printf and puts

13.3.2 Reading Strings Using scanf and gets

13.3.3 Reading Strings Character by Character

13.4 Accessing the Characters in a String

13.5 Using the C String Library

13.5.1 The strcpy Function

13.5.2 The strlen Function

13.5.3 The strcat Function

13.5.4 The strcmp Function

13.6 String Idioms

13.6.1 Searching for the End of a String

13.6.2 Copying a String

13.7 Arrays of Strings

Chapter 14 THE PREPROCESSOR (Support "II. Course training goal " in the

second article)

14.1 How the Preprocessor Works

14.2 Preprocessing Directives

14.3 Macro Definitions

14.3.1 Simple Macros

14.3.2 Parameterized Macros

14.3.3 The # Operator

14.3.4 The ## Operator **

14.3.5 General Properties of Macros

14.3.6 Parentheses in Macro Definitions

14.3.7 Creating Longer Macros **

14.3.8 Predefined Macros

14.3.9 Additional Predefined Macros in C99 **

14.3.10 Empty Macro Arguments **

14.3.11 Macros with a Variable Number of Arguments **

14.3.12 The __func__ Identifiler **

14.4 Conditional Compilation

14.4.1 The #if and #endif Directives

14.4.2 The defined Operator

14.4.3 The #ifdef and #ifndef Directives

14.4.4 The #elif and #else Directives

14.4.5 Uses of Conditional Compilation

14.5 Miscellaneous Directives

14.5.1 The #error Directive **

14.5.2 The #line Directive **

14.5.3 The #pragma Directive **

14.5.4 The _Pragma Directive **

Chapter 15 RITING LARGE PROGRAMS (Support "II. Course training goal "

in the third article)

15.1 Source Files

15.2 Headers Files

15.2.1 The #includeDirective

15.2.2 Sharing Macro Definitions and Type Definitions

15.2.3 Sharing Function Prototypes

15.2.4 Sharing Variable Declarations

15.2.5 Nested Includes

15.2.6 Protecting Header Files

15.2.7 #error Directives in Headers Files **

15.3 Dividing a Program into Files

15.4 Building a Multiple-File Program

15.4.1 Makefiles

15.4.2 Errors During Linking

15.4.3 Rebuilding a Program

15.4.4 Defining Macros Outside a Program **

Chapter 16 STRUCTURES, UNIONS, AND ENUMERATIONS (Support "II.

Course training goal " in the second article)

16.1 Structure Variable

16.1.1 Declaring Structure Variables

16.1.2 Initializing Structure Variables

16.1.3 Designed Initializers

16.1.4 Operations on Structures

16.2 Structure Types

16.2.1 Declaring a Structure Tag

16.2.2 Defining a Structure Type

16.2.3 Structure as Arguments and Return Values

16.2.4 Compound Literals **

16.3 Nested Arrays and Structures

16.3.1 Nested Structures

16.3.2 Arrays of Structures

16.3.3 Initializing an Array of Structures

16.4 Unions

16.4.1 Using Unions to Save Space

16.4.2 Using Unions to Build Mixed Data Structures

16.4.3 Adding a “Tag Field” to a Union

16.5 Enumerations

16.5.1 Enumerations Tags and Type Names

16.5.2 Enumerations as Integers

16.5.3 Using Enumerations to Declare “Tag Fields”

Chapter 17 ADVANCED USES OF POINTERS (Support "II. Course training

goal " in the third article)

17.1 Dynamic Storage Allocation

17.1.1 Memory Allocation Functions

17.1.2 NULL Pointers

17.2 Dynamically Allocated Strings

17.2.1 Using malloc to Allocate Memory for a String

17.2.2 Using Dynamic Storage Allocation in String Functions

17.2.3 Arrays of Dynamically Allocated Strings

17.3 Dynamically Allocated Arrays

17.3.1 Using malloc to Allocate Storage for an Array

17.3.2 The calloc Function **

17.3.3 The realloc Function **

17.4 Deallocating Storage

17.4.1 The free Function

17.4.2 The “Dangling Pointer” Problem

17.5 Linked Lists

17.5.1 Declaring a Node Type

17.5.2 Creating a Node

17.5.3 The –> Operator

17.5.4 Inserting a Node at the Beginning of a Linked List

17.5.5 Searching a Linked List

17.5.6 Deleting a Node from a Linked List

17.5.7 Ordered Lists

17.6 Pointers to Pointers

17.7 Pointers to Functions

17.7.1 Function Pointers as Arguments **

17.7.2 The qsort Function **

17.7.3 Other Uses of Function Pointers **

17.8 Restricted Pointers (C99) **

17.9 Flexible Array Members (C99) **

Chapter 18 DECLARATIONS（Support "II. Course training goal " in the third

article）

18.1 Declaration Syntax

18.2 Storage Classes

18.2.1 Properties of Variables

18.2.2 The auto Storage Class

18.2.3 The static Storage Class

18.2.4 The extern Storage Class

18.2.5 The register Storage Class

18.2.6 The Storage Class of a Function

18.2.7 Summary

18.3 Type Qualifiers

18.4 Declarators

18.4.1 Deciphering Complex Declarations

18.4.2 Using Type Definitions to Simplify Declarations

18.5 Initializers

18.6 Inline Function

18.6.1 Inline Definitions**

18.6.2 Restrictions on Inline Functions **

18.6.3 Using Inline Functions with GCC**

Chapter 20 LOW-LEVEL PROGRAMMING (Support "II. Course training goal

" in the third article)

20.1 Bitwise Operators

20.1.1 Bitwise Shift Operators

20.1.2 Bitwise Complement, And, Exclusive Or, and Inclusive Or

20.1.3 Using the Bitwise Operators to Access Bits

20.1.4 Using the Bitwise Operators to Access Bit-Fields

20.2 Bit-Fields in Structures **

20.3 Other Low-Level Techniques **

20.3.1 Defining Machine-Dependent Types

20.3.2 Using Unions to Provides Multiple Views of Data

20.3.3 Using Pointers as Addresses

20.3.4 The volatile Type Qualifier

Chapter 22 INPUT/OUTPUT (Support "II. Course training goal " in the second

article)

22.1 Streams

22.1.1 File Pointers

22.1.2 Standard Streams and Redirection

22.1.3 Text Files versus Binary Files

22.2 File Operations

22.2.1 Opening a File

22.2.2 Modes

22.2.3 Closing a File

22.2.4 Attaching a File to an Open Stream

22.2.5 Obtaining File Names from the Command Line

22.2.6 Temporary Files **

22.2.7 File Buffering **

22.2.8 Miscellaneous File Operations **

22.3 Formatted I/O **

22.3.1 The …printf Function

22.3.2 …printf Conversion Specifications

22.3.3 C99 Changes to …printf Conversion Specifications

22.3.4 Examples of …printf Coversion Specifications

22.3.5 The …scanf Functions

22.3.6 …scanf Format Strings

22.3.7 …scanf Conversion Specifications

22.3.8 C99 Changes to …scanf Conversion Specifications

22.3.9 …scanf Examples

22.3.10 Detecting End-of-File and Error Conditions

22.4 Character I/O

22.4.1 Output Function

22.4.2 Input Function

22.5 Line I/O

22.5.1 Output Function

22.5.2 Input Function

22.6 Block I/O

22.7 File Positioning

22.8 String I/O

22.8.1 Output Functions

22.8.2 Input Functions

IV. Course Assessment Method

This course is an examination course. The ratio of the ordinary grade, the

ordinary test and the final exam in the total score is (3:2:5). The grades take into

account students' performance, including attendance, questions, homework, etc. The

usual test includes 2 staged class tests。

Class hours allocation table

The teaching content Lecture hours
Practice

periods

Chapter 1 1

Chapter 2 2

Chapter 3 1

Chapter 4 4 2

Chapter 5 3 2

Chapter 6 4 4

Chapter 7 1

Chapter 8 3 2

Chapter 9 3 2

Chapter 10 2

Chapter 11 3 2

Chapter 12 3 2

Chapter 13 3

Chapter 14 2

Chapter 15 2 2

Chapter 16 2

Chapter 17 3

Chapter 18 1

Chapter 20 2

Chapter 22 3 2

Total 48 20

V. References

C Programming: A modern approach (second edition), K. N. King, ISBN-10:

0-393-97950-4, ISBN-13: 978-0-393-97950-3

《C语言程序设计_现代方法 第 2版》作者： (美)K. N. King 译者：吕秀锋 黄

倩. 人民邮电出版社 2010

