* 2022S-ENGR_0031: Electric Circuits Instructor: Jeungphill Hanne

<Education>

- PhD, Physics, University of California-Los Angeles, USA
- → Majoring in Experimental Biophysics (Dr. Giovanni Zocchi)
- PhD Study, Physics, University of Florida (UF), USA
 - → Majoring in Theoretical Elementary Particle physics
- MS, Physics, University of California-Riverside, USA
- BS, Physics, Inha University, South Korea

<Professional Experiences>

- Jul. 2010~ Aug. 2019: **Postdoctoral Research Associate**, The Ohio State University Wexner Medical Center, (*Adviser: Dr. Richard Fishel*)
- → Studying DNA Mismatch Repair by Experimental Biophysics
- Sept. 2006~ Apr. 2010 : **Senior Research Scientist**, LG Display Co, Ltd., South Korea → Optical Physics
- → So, you can come to me anytime, and can ask any advice, or question for the future Career, and so on...., Very happy to share my experience, but the choice is yours!!

* 2022S-ENGR_0031: Electric Circuits Instructor: Jeungphill Hanne

Agenda for today

1. SCUPI 2022 Spring Academic Calendar

- Academic Calendar: Midterms & Final etc.
- My Schedule : Office hours etc.

2. Course Introduction

- Course information
 - Subject, Text book, Lecture Hour, Office hour, Course website, etc.
- Course Objective & Scope, Course Learning Key Points
- Course Grading & Tentative Course Schedule

3. Call class rolls

4. Brief Overview of Chapters

1. SCUPI 2022 spring Academic Calendar

Academic Calendar: Midterms & Final etc.

SCUPI Academic Calendar for 2021-2022 Spring																											
	Feb. Mar.				Apr.			May				Jun.			Jul.				Aug.								
Monday	21	28	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13	20	27	4	11	18	25	1	8	15	22
Tuesday	22	1	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14	21	28	5	12	19	26	2	9	16	23
Wednesday	23	2	9	16	23	30	6	13	20	27	4	11	18	25	1	8	15	22	29	6	13	20	27	3	10	17	24
Thurs day	24	3	10	17	24	31	7	14	21	28	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18	25
Friday	25	4	11	18	25	1	8	15	22	29	6	13	20	27	3	10	17	24	1	8	15	22	29	5	12	19	26
Saturday	26	5	12	19	26	2	9	16	23	30	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13	20	27
Sunday	27	6	13	20	27	3	10	17	24	1	8	15	22	29	5	12	19	26	3	10	17	24	31	7	14	21	28
SCU Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
SCU Term					ing Te	Ceaching Weeks								Mtl. Weeks Summ				ner Recess									
	1 st Midterm							2nd Midterm						Final													

This schedule is preliminary!!

1. SCUPI 2022 spring Academic Calendar

My Schedule : Office hours etc.

		2020-2021 Spring	g Semester Course Schedu	ıle	
Class time	Monday	Tuesday	Wednesday	Thursday	Friday
08:15-09:00			Electric Circuit 01 3-103		·
09:10-09:55			Electric Circuit 01 3-103		
10:15-11:00	Physics I 01 3-106		Electric Circuit 01 3-103	Physics I 01 3-106	Physics I 02 3-101
11:10-11:55	Physics I 01 3-106		Office Hour Electric Circuit 01	Physics I 01 3-106	Physics I 02 3-101
			Lunch Break		
13:50-14:35		Physics I 02 3-101	Electric Circuit 02 3-102	Office Hour Physics I 01	
14:45-15:30		Physics I 02 3-101	Electric Circuit 02 3-102	Office Hour Electric Circuit 02	
15:40-16:25		Office Hour Physics I 02	Electric Circuit 02 3-102		
16:45-17:30					

But, you can come to my office anytime when I am in my office ^^

2. Course Introduction

Course information

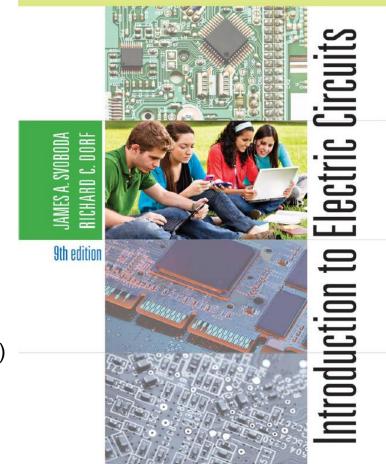
Electric Circuits

 Learn the basics of Electric Circuit, and the systematic approaches in obtaining and designing the Circuit properties

Text Book

- Introduction of Electrical Circuits, 9th Ed. Svoboda and Dorf, 2014 (国际学生版)
- ISBN 978-1-119-54657-3, WILEY

Lecture


- Instructor : Jeungphill Hanne, PhD jeungphill.hanne@scupi.cn
- Time: Mon.(13:50-16:25),or Tue. (13:50-16:25)
- Office Hour: Mon.(16:45-17:30)/ Wed.(14:45-15:30)
- Office: 3-321A @ Zone 3
- TA: Peter, and Jarvis
- Office Hrs: To be announced.

Course Format

- Lecture, and Active Participation (i.e. Quiz, *Quiz Presentation*, etc.)

Course Grading

- Two Midterms, Final, Homework, Quiz, and Attitude (ex. Attendance, Focus, Engagement, Punctuality for HW, etc.)

2. Course Introduction

- Course Scope & Objective
- Objective: Understand the basic Electric Circuits, Systematically Solving Electrical properties and eventually obtaining an ability to design a simple Electric Circuit.
- Scope: An advanced Course based on "Electricity & Magneticity" of the Physics 2 course
 - → Required : Basic Concepts (the Physics 2 course) + Some mathematical approaches!
 - 1. Steady State Circuit: Constant Sources (Voltage, Current), Resistors, Op Amp
 - → Chap 1 ~ Chap 6 : Not much for Math! (Just simple Matrices)
 - 2. Time dependent Circuit: 1+ Variable Sources (Voltage, Current), Capacitors, Inductors
 - → Chap 7 ~ Chap 13: 1st, 2nd Order Differential Eq.. Frequency Domain Analysis (AC)
 - 3. A Mathematical tool to tackle **Differential Equation**
 - → Chap 14 ~ Chap 16 : Mathematical Transformation(Laplace, Fourier)

Course Learning Key Points

- Systematically and Mathematically Formularize Concepts and Results of Electric Circuit
- → Can Assist to solve to Electrical Properties Easily and Quickly, and to design a New Circuit! (So, Assume Concepts and Results are already familiarized!!, and Also Some Math!

Course Grading

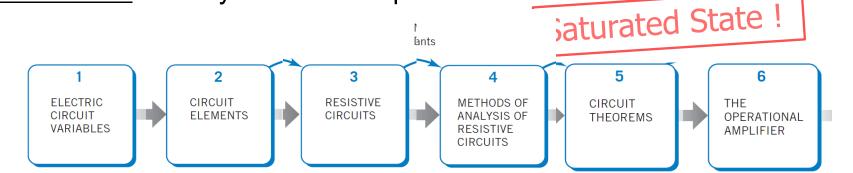
- Grading Components: HW(15%), Quiz (5%), Midterm I (24%), Midterm II (24%), Final (25%)

Attitude(5%: Attendance, Engagement, Punctuality for HW, etc.), & Group Presentation (2%)

Can be Flexible! Tests are not accumulative, but might overlap a little bit!

• Tentative Course Schedule _____

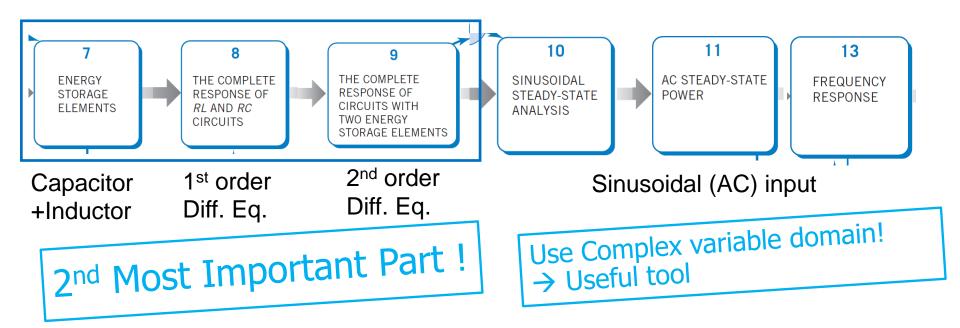
Week	ENGR_0031(Electric Circuits)	Topics	Assignment
Week 1 (2/21-2/27)	Introduction	Syllabus	
Week 2 (2/28-3/6)	Chap1 & Chap 2	Electric Circuit Variables	HW1
Week 3 (3/7-3/13)	Chap2 & Chap 3	Circuit Elements	HW2
Week 4 (3/14-3/20)	Chap 3 & Chap 4	Resistive Circuits	HW3
Week 5 (3/21-3/27)	Chap 4	Analysis of Resistive Circuits	HW4
Week 6 (3/28-4/3)	Chap 5	Circuit Theorems	
Week 7 (4/4-4/10)	Chap 5		HW5
Week 8 (4/11-4/17)	Review & Mid Term 1		
Week 9 (4/18-4/24)	Chap 6	The Operational Amplifier	HW6
Week 10 (4/25-5/1)	Chap 6	Energy Storage Elements	HW7
Week 11 (5/2-5/8)	Chap 7		
Week 12 (5/9-5/15)	Chap 8	RL and RC Circuits	
Week 13 (5/16-5/22)	Chap 8		HW8
Week 14 (5/23-5/29)	Review & Mid Term 2		
Week 15 (5/30-6/18)	Chap 9	RLC Circuits	HW9
Week 16 (6/6-6/12)	Chap 9		
Week 17 (6/13-6/19)	Chap 10	Sinusoidal Steady-State Analysis	
Week 18 (6/20-6/26)	Chap 10		HW10
Week 19 (6/27-7/3)	Chap 11 & Review	AC Steady-State Power	HW11
Week 20 (7/4-7/10)	Final		


3. Brief Overview of the chapters and the structure of the chapter

- Brief Overview of the chapters
- Structure of the chapter
- Brief Overview of the Chapter Where KVL & KCL come from ?

Most Important Part!

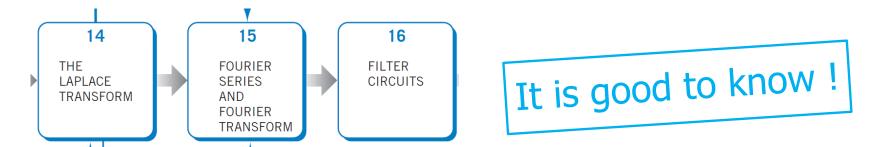
Just KVL & KCL!


- ✓ All Chapters : Mainly Categorized to Three Parts!
- 1). First Part: Steady State of "Simple" Circuit

- Circuit Elements : Resistor Only, Constant Energy Source (Voltage, Current)
- Kirchhoff Voltage Law(KVL) & Kirchhoff Current Law(KCL)
- Theorems from KVL & KCL → Formularize them
- New Electric Component : Op Amp (Operational Amplifier) for Mathematical Calculation
- → Not really Mathematically New!!

3. Brief Overview of Chapters and Chapter 1

2). Second Part: Time Varying Circuit



Transient Output + Steady State Output

- Circuit Elements : **Resistor + Capacitor + Inductor Only**, Time Varying Energy Source [Specially Alternating → Sinusoidal : AC(Alternating Current)]
- Kirchhoff Voltage Law(KVL) & Kirchhoff Current Law(KCL)
- → Mathematics: 1st order, 2nd order differential equation, and Frequency Domain Analysis (AC)

3. Brief Overview of Chapters and Chapter 1

3). Third Part: Useful Mathematical Tools for Diff. eq. (Solving, Analysis)

Transient+ Steady Frequency State Output Analysis

- Systematically and Mathematically Formularize Concepts and Results of Electric Circuit
- → Can Assist to solve to Electrical Properties Easily and Quickly, and to design a New Circuit! (So, Assume Concepts and Results are already familiarized!!, and Also Some Math!

3. Brief Overview of Chapters

Structure of the chapter

Example

- Chapter 4 Methods of Analysis of Resistive Circuits
 - 4.1 Introduction: Node Voltage Analysis & Mesh Current Analysis
 - 4.2 Node Voltage Analysis of Circuits with Current Sources
 - 4.3 Node Voltage Analysis of Circuits with Current and Voltage Sources
 - 4.4 Node Voltage Analysis with Dependent Sources
 - 4.5 Mesh Current Analysis with Independent Voltage Sources
 - 4.6 Mesh Current Analysis with Current and Voltage Sources
 - 4.7 Mesh Current Analysis with Dependent Sources
 - 4.8 The Node Voltage Method and Mesh Current Method Compared
 - 4.9 Analyzing Resistive Circuits Using MATLAB

Skip these parts!

- 4.10 Using PSpice to Determine Node Voltages and Mesh Currents
- 4.11 How Can We Check . . . ?
- 4.12 Design Example: Potentiometer Angle Display