Technical-Elective

Introduction to Mechanical Behavior of Fiber Reinforced Composites

Fall 2021

CATALOG DESCRIPTION

ME2033 (3 Cr.). Fiber reinforced composite materials with unidirectional and multi-layer settings. Fundamental concepts of fiber-reinforced composite materials of their manufacturing physical and mechanical properties, mechanical behavior, strength, design methodology.

Instructor:	Gang Qi, PhD
Textbook:	Mechanics of composite materials, by Robert M. Jones, 2 nd Edition, CRC
	Press
Reference book:	Analysis and performance of fiber composites, by B. D. Agarwal and L. J.
	Broutman, 3th Edition, Wiley (not required)
Office:	4-219; Email: gang.qi@scupi.cn
Office hours	2:00-6:00 pm Weds.

Course Topics:

- Composite materials, advantages of composite materials
- Introduction to manufacturing process of composite materials,
- Mechanical behaviors of unidirectional lamina,
- Micromechanical behaviors of lamina,
- Micromechanical behaviors of a multilayer composites(laminate), and
- Responses of a laminate under various loadings.

Course project:

A one-week (tentative) course project will be given toward the end of the semester. The project is to evaluate students' ability to apply the knowledge to design a laminate plate.

Course outlines:

Part I

- 1. Introduction to composite materials
- 2. Brief review of mechanics of materials

Part II

- 1. Unidirectional composite materials
 - 1) Longitudinal behavior
 - Initial stiffness, Load sharing
 - 2) Composite deformation/fracture behavior and mode Composites failure mechanisms, influencing factors
- 2. Transvers stiffness and strength

1) Constant stress model

Stress equality, Displacement superposition,

- 2) Halpin-Tsai relations for Transverse modulus
- 3) Transverse strength
- 4) Prediction of shear modulus
- 5) Prediction of Poisson's ratio

Part III (chp 5 and 6 partial):

- 1. Stress-strain relationships and engineering constants
 - 1) Special orthotropic lamina
 - 2) General orthotropic lamina
 - 3) Engineering constant transformation
- 2. Hooke's Law, stiffness/compliance matrices
 - 4) General anisotropic materials
 - 5) Specially orthotropic material
 - 6) Transverse isotropic material
 - 7) Isotropic material, and
 - 8) Restrictions on elastic constants, transformation of stiffness/compliance matrices.
- 3. Strength of orthotropic lamina
 - 1) Maximum-stress theory
 - 2) Maximum-strain theory, and
 - 3) Maximum-work theory.
- 4. Analysis of laminated composites

Laminate strains and stress, determination of laminate stresses and strains, analysis of laminates after initial failure.

Course project:

A one-week (tentative) course project will be given toward the end of the semester. The project will evaluate students' ability to apply the knowledge to design and optimize a laminate plate.

Grading*:

Popup quiz

٠	Homework/Class Assignments	10%
•	Two midterm exams	40% (20% each)
•	One-week course project	10%
•	Final exam	35%

Numerical and letter scales conversion

Letter	A	A-	B+	В	B-	C+	С	C-	D+	D	F
Percentage (%)	100~90	89~85	84~80	79~76	75~73	72~70	69~66	65~63	62~61	60	<60