* 2021F-ENGR_0031: Electric Circuits Instructor: Jeungphill Hanne

<Education>

- PhD, Physics, University of California-Los Angeles, USA
- → Majoring in Experimental Biophysics (Dr. Giovanni Zocchi)
- PhD Study, Physics, University of Florida (UF), USA
 - → Majoring in Theoretical Elementary Particle physics
- MS, Physics, University of California-Riverside, USA
- BS, Physics, Inha University, South Korea

<Professional Experiences>

- Jul. 2010~ Aug. 2019: **Postdoctoral Research Associate**, The Ohio State University Wexner Medical Center, (*Adviser: Dr. Richard Fishel*)
- → Studying DNA Mismatch Repair by Experimental Biophysics
- Sept. 2006~ Apr. 2010 : **Senior Research Scientist**, LG Display Co, Ltd., South Korea → Optical Physics

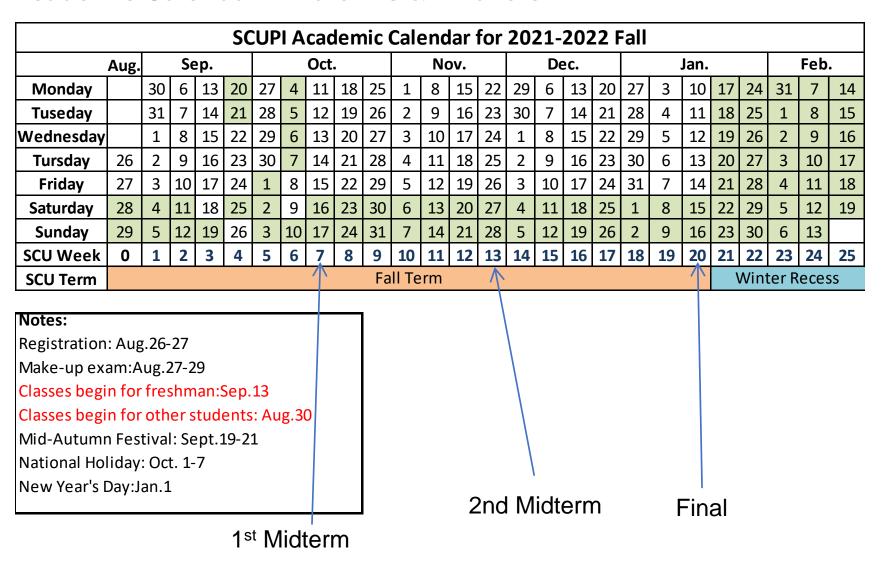
* 2021F-ENGR_0031: Electric Circuits Instructor: Jeungphill Hanne

List

1. SCUPI 2021 Fall Academic Calendar

- Academic Calendar: Midterms & Final etc.
- My Schedule : Office hours etc.

2. Course Introduction


- Course information
 - Subject, Text book, Lecture Hour, Office hour, Course website, etc.
- Course Objective & Scope, Course Learning Key Points
- Course Grading & Tentative Course Schedule

3. Brief Overview

- Brief Overview of the chapters
- Structure of the chapter

1. SCUPI 2021 Fall Academic Calendar

Academic Calendar: Midterms & Final etc.

This schedule is preliminary!!

1. SCUPI 2021 Fall Academic Calendar

My Schedule : Office hours etc.

2020-2021 Spring Semester Course Schedule						
Class time	Monday	Tuesday	Wednesday	Thursday	Friday	
08:15-09:00				Physics II 02 3-103		
09:10-09:55				Physics II 02 3-103		
10:15-11:00				Office Hour Physics II 02	Physics II 03 3-101	
11:10-11:55					Physics II 03 3-101	
		L	unch Break			
13:50-14:35	Electric Circuit 01 3-106	Electric Circuit 02 3-106				
14:45-15:30	Electric Circuit 01 3-106	Electric Circuit 02 3-106	Office Hour Electric Circuit 02			
15:40-16:25	Electric Circuit 01 3-106	Electric Circuit 02 3-106	Office Hour Physics II 03			
16:45-17:30	Office Hour Electric Circuit 01	Physics II 02 3-103	Physics II 03 3-101			
17:40-18:25		Physics II 02 3-103	Physics II 03 3-101			

But, you can come to my office anytime when I am in my office ^^

2. Course Introduction

Course information

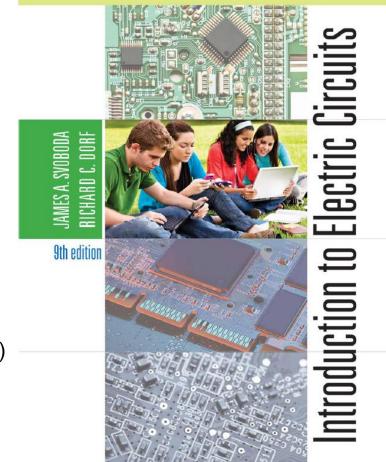
Electric Circuits

 Learn the basics of Electric Circuit, and the systematic approaches in obtaining and designing the Circuit properties

Text Book

- Introduction of Electrical Circuits, 9th Ed. Svoboda and Dorf, 2014 (国际学生版)
- ISBN 978-1-119-54657-3, WILEY

Lecture


- Instructor : Jeungphill Hanne, PhD jeungphill.hanne@scupi.cn
- Time: Mon.(13:50-16:25),or Tue. (13:50-16:25)
- Office Hour : Mon.(16:45-17:30)/ Wed.(14:45-15:30)
- Office: 3-321A @ Zone 3
- TA: Peter, and Jarvis
- Office Hrs: To be announced.

Course Format

- Lecture, and Active Participation (i.e. Quiz, *Quiz Presentation*, etc.)

Course Grading

- Two Midterms, Final, Homework, Quiz, and Attitude (ex. Attendance, Focus, Engagement, Punctuality for HW, etc.)

2. Course Introduction

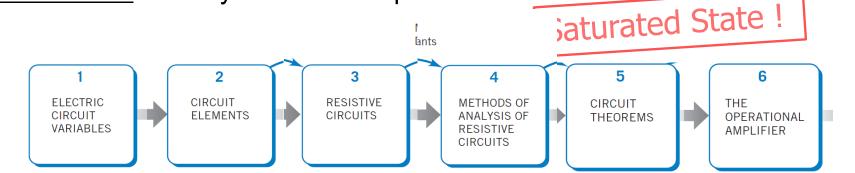
- Course Scope & Objective
- Objective: Understand the basic Electric Circuits, Systematically Solving Electrical properties and eventually obtaining an ability to design a simple Electric Circuit.
- Scope: An advanced Course based on "Electricity & Magneticity" of the Physics 2 course
- → Required : Basic Concepts (the Physics 2 course) + Some mathematical approaches!
- 1. Steady State Circuit: Constant Sources (Voltage, Current), Resistors, Op Amp
 - → Chap 1 ~ Chap 6 : Not much for Math! (Just simple Matrices)
- 2. Time dependent Circuit: 1+ Variable Sources (Voltage, Current), Capacitors, Inductors
 - → Chap 7 ~ Chap 13: 1st, 2nd Order Differential Eq.. Frequency Domain Analysis (AC)
- 3. A Mathematical tool to tackle **Differential Equation**
 - → Chap 14 ~ Chap 16 : Mathematical Transformation(Laplace, Fourier)

Course Learning Key Points

- Systematically and Mathematically Formularize Concepts and Results of Electric Circuit
 - → Can Assist to solve to Electrical Properties Easily and Quickly, and to design a New Circuit! (So, Assume Concepts and Results are already familiarized!!, and Also Some Math!

Course Grading

Grading Components: HW(15%), Quiz (5%), Midterm I (25%), Midterm II (25%), Final (25%)
and Attitude(5%: Attendance, Focus, Engagement, Punctuality for HW, etc.) + maybe plus alpha
Can be Flexible!

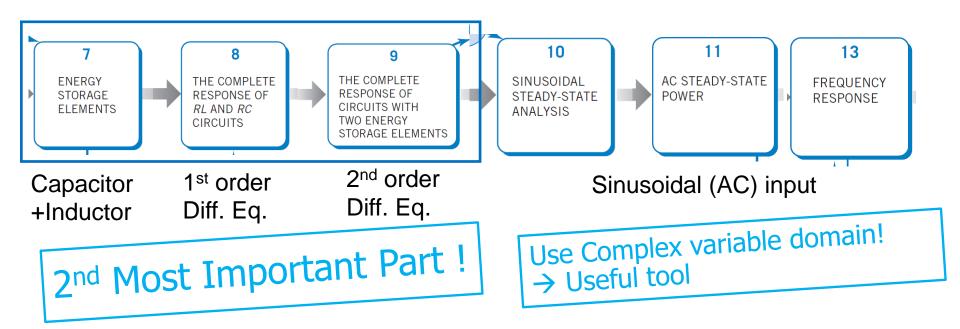

Tests are not accumulative, but might overlap a little bit!

• Tentative Course Schedule _____

Week	ENGR_0031(Electric Circuits)	Topics	Assignment
Week 1 (8/30-9/05)	Introduction	Syllabus	
Week 2 (9/6-9/12)	Chap1 & Chap 2	Electric Circuit Variables	HW1
Week 3 (9/13-9/19)	Chap2 & Chap 3	Circuit Elements	HW2
Week 4 (9/20-9/26)	Chap 3 & Chap 4	Resistive Circuits	HW3
Week 5 (9/27-10/03)	Chap 4	Analysis of Resistive Circuits	HW4
Week 6 (10/4-10/10)	Chap 5	Circuit Theorems	
Week 7 (10/11-10/17)	Chap 5		HW5
Week 8 (10/18-10/24)	Review & Mid Term 1		
Week 9 (10/25-10/31)	Chap 6	The Operational Amplifier	HW6
Week 10 (11/1-11/7)	Chap 6	Energy Storage Elements	HW7
Week 11 (11/8-11/14)	Chap 7		
Week 12 (11/15-11/21)	Chap 8	RL and RC Circuits	
Week 13 (11/22-11/28)	Chap 8		HW8
Week 14 (11/29-12/5)	Review & Mid Term 2		
Week 15 (12/6-12/12)	Chap 9	RLC Circuits	HW9
Week 16 (12/13-12/19)	Chap 9		
Week 17 (12/20-12/26)	Chap 10	Sinusoidal Steady-State Analysis	
Week 18 (12/27-1/2)	Chap 10		HW10
Week 19 (1/3-1/9)	Chap 11 & Review	AC Steady-State Power	HW11
Week 20 (1/10-1/16)	Final		

3. Brief Overview of the chapters and the structure of the chapter

- Brief Overview of the chapters
- Structure of the chapter
- Brief Overview of the Chapter Where KVL & KCL come from ?
- ✓ All Chapters : Mainly Categorized to Three Parts!
- 1). First Part: Steady State of "Simple" Circuit

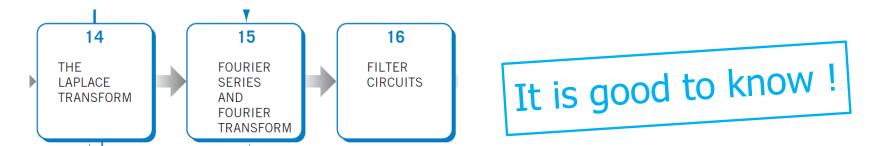

- Circuit Elements: Resistor Only, Constant Energy Source (Voltage, Current)
- Kirchhoff Voltage Law(KVL) & Kirchhoff Current Law(KCL)
- Theorems from KVL & KCL → Formularize them
- New Electric Component : Op Amp (Operational Amplifier) for Mathematical Calculation
- → Not really Mathematically New!!

Most Important Part!

Just KVL & KCL!

3. Brief Overview of Chapters and Chapter 1

2). Second Part: Time Varying Circuit



Transient Output + Steady State Output

- Circuit Elements : **Resistor + Capacitor + Inductor Only**, Time Varying Energy Source [Specially Alternating → Sinusoidal : AC(Alternating Current)]
- Kirchhoff Voltage Law(KVL) & Kirchhoff Current Law(KCL)
- → Mathematics: 1st order, 2nd order differential equation, and Frequency Domain Analysis (AC)

3. Brief Overview of Chapters and Chapter 1

3). Third Part: Useful Mathematical Tools for Diff. eq. (Solving, Analysis)

Transient+ Steady Frequency State Output Analysis

- Systematically and Mathematically Formularize Concepts and Results of Electric Circuit
- → Can Assist to solve to Electrical Properties Easily and Quickly, and to design a New Circuit! (So, Assume Concepts and Results are already familiarized!!, and Also Some Math!

3. Brief Overview of Chapters

Structure of the chapter

Example

- Chapter 4 Methods of Analysis of Resistive Circuits
 - 4.1 Introduction: Node Voltage Analysis & Mesh Current Analysis
 - 4.2 Node Voltage Analysis of Circuits with Current Sources
 - 4.3 Node Voltage Analysis of Circuits with Current and Voltage Sources
 - 4.4 Node Voltage Analysis with Dependent Sources
 - 4.5 Mesh Current Analysis with Independent Voltage Sources
 - 4.6 Mesh Current Analysis with Current and Voltage Sources
 - 4.7 Mesh Current Analysis with Dependent Sources
 - 4.8 The Node Voltage Method and Mesh Current Method Compared
 - 4.9 Analyzing Resistive Circuits Using MATLAB

Skip these parts!

- 4.10 Using PSpice to Determine Node Voltages and Mesh Currents
- 4.11 How Can We Check . . . ?
- 4.12 Design Example: Potentiometer Angle Display