Semester	Spring 2021						
Course Number Course Title	Technical Elective Application of Finite Element Analysis (FEA) for Mechanical Design						
Instructor	Professor Ping C. Sui, Ph.D Office: 4-223 E-mail: ping.sui@scupi.cn						
Teaching Assistant	Zhang Ze E-mail: 1774236941@qq.com						
Office Hours	Tuesday 13:00-17:00 Thursday 13:00-17:00						
Lecture Time Classroom	Wednesday 13:50-16:25 Zone 4-212						
Prerequisites	Engr 0135 Statics and Mechanics of Materials 1 Engr 0145 Statics and Mechanics of Materials 2 MESE1028 Mechanical Design 1 (Recommended)						
References	ANSYS Workbench User's Guide (https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/wb2_help /wb2_help.html%23wb2_help)						
	ANSYS Mechanical User's Guide (https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/wb_sim/d s_Home.html)						
	ANSYS Element Reference (https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v201/en/ans_elem /Hlp_E_LIBRARY.html)						
Course	This course is a 3 credit hour class.						
Description	The learning objective of the course is to provide students the knowledge of applying FEA technique in structural analysis of mechanical components. The ultimate goal is for students to develop a proper protocol while using FEA to assess the failure risks of a mechanical component.						

The teaching will consist the following elements:

- hands-on training of using ANSYS Mechanical for structural analysis,
- frequent discussions for validity of the developed FEA model, and
- Interpretation of FEA analysis results and risk assessment against presumed failure modes.

Date	Course Outline	In-Class Workshop	Homework/Assignment		
Mar 11	0. Course Introduction				
Mar 18	01. Discrete Model for Finite Element Analysis	WS.01 Uniaxial Tensile Test	Reading Assignment 01		
Mar 25	02. Introduction of ANSYS Workbench (WB)		Lab Assignment 01		

			Reading Assignment 02
Apr 01	03. ANSYS WB Mechanical Basics	0301 Uniaxial Tensile Test	Lab Assignment 02
	03A. Failure Assessment		
Apr 08	04. General Preprocessing/Post-	0401 Coordinate System	Lab Assignment 03
	processing	0402 Named Selection	
Apr 15	Section Exam 01		
Apr 22	05. Mesh Control in ANSYS Mechanical	0501 Hex/Tet Mesh Control	Lab Assignment 04
		0502 Convergence Test	
Apr 29	06. Error Estimation and Stress	0601 2D Triangular Plate Simulation	Lab Assignment 05
	Singularity	0602 2D Simulation (Stress Concentration)	
May 06	07. Static Structural Analysis (Loads and	0701 2D Triangular Plate Simulation	Lab Assignment 06
	Supports)	0702 Round Bar (Moment/Torque)	
		0703 Bearing Bar	
May 13	08. Remote Displacement and Force	0801 Remote Force Behavior Control	Lab Assignment 07
		0802 Beam Bending + Axial Tension	
May 20	Section Exam 02		
May 27	09. Line Modeling for Beam Analysis	0901 Cantilever Beam	Lab Assignment 08
May 25	10. Line Modeling for Truss Analysis	1001 2D Truss Analysis	Lab Assignment 09
Jun 03	11. Connection Modeling Using	1101 Bearing-Pin Contact Analysis	Lab Assignment 10
	Contacts	1102 Press-Fit Cylinders	
Jun 10	12. Submodeling		Lab Assignment 11
Jun 17	13. Modal Analysis		Lab Assignment 12
Jun 24	Section Exam 03		
	14. Thermal Modeling (Optional)		

In-Class Workshops	Hands-on practices assigned to students in class to promote discussions and keep students in- sync with course material during lecturing
Homework	Problem sets will be distributed each week after the class. Each problem set is designed to build upon the material covered in the preceding lectures and recitations. Homework assigned in a particular class is due at 8 AM on the day of the next class period,
	unless otherwise posted. Late HW will not be accepted.
Exams	No midterm and final exams.
	Replaced by four section exams given throughout the semester. The section exams will be in-
	class and hands-on type of testing to benchmark individual's proficiency in conducting a
	mechanical analysis using ANSYS Mechanical.
	All section exams will be comprehensive.
	No make-up will be given for the missing exam. Exams missed due to unpredictable events will
	be dealt with on a case-by-case basis.

Final Project	Each student will select a mechanical system of their own interest and work independently to conduct structural analysis using the learned ANSYS knowledge.													
	Each student will submit a brief proposal to introduce the modeled system as well as to outline their project objective, technical approach and expected outcome.													
	Tentative proposal deadline: Nov 12, 2020.													
	Final project will be graded per technical challenges of the modeled problem, modeling skills, analysis details, and final report quality.													
Grades	In-Class Workshops: 15%													
	Hor	nework	& Lab	Assigr	ments	s: 30%								
	Sec	tion Exa	ms: 40)%										
	Fina	al Projec	t: 15%	, 5										
	Grades will be assigned per following scales: 附件: 等级成绩和百分成绩、绩点对照表													
	字母等级 A A- B+ B B- C+ C C- D+ D F													
		中文等级 优秀 良好 中等 合格 不合格												
		百分制	100~90	89~85	84~80	79~76	75~73	72~70	69~66	65-63	62~61	60	<60	
		绩点	4	3.7	3.3	3	2.7	2.3	2	1.7	1.3	1	0	
Class Attendance	Stu	dents ar	e expe	cted t	o atte	nd eve	ry clas	s peri	od.					
	Early is on time, on time is late. As a courtesy to your fellow classmates, be punctual and arrive													
Academic Honesty	All	of us are	equal	lv rest	onsib	le for e	ensurii	ng a fa	ir and	positi	ve lear	ning e	environ	ment.
	Stu	dents ar	e perm	nitted	to disc	cuss ho	omewo	ork ass	ignme	nts to	gether	, but s	should	do their own
	work when preparing a problem solution.													
	All exams are to be completed without unauthorized assistance. Any student caught cheating													
	of "F" for the course.													