Spring 2021

MEMS 1049 Mechatronics

(Modifications to this syllabus may be required during the semester. Any changes to the syllabus will be announced in class or posted on the course website.)

Instructor: Qi (Michael) Lu, Ph.D.	Lab Engineer: Senbao Lin
Office: Zone 4-218	Office: Zone 3-321B
Email: <u>qi.lu@scupi.cn</u>	Email: <u>senbao.lin@scupi.cn</u>
Grading Teaching Assistant:	Lab Teaching Assistants:
Hongping Li <u>adolhong@163.com</u>	You Mu <u>2286630964@qq.com</u>
Office Hours: Tuesday	12:30 - 1:30 PM
Wednesday	12:30 - 1:30 PM
Thursday	12:30 - 1:30 PM
Friday	12:30 - 1:30 PM

Note: when emailing the instructor, lab engineer or the teaching assistants, please

- Include the course number, your name and your student number in the subject field of your message;
- Use your university email account.

Lecture time/location: Thursday 10:15 - 11:55 AM/Zone 4-212

Laboratory location: Zone 3-116

Laboratory times: Tuesday 8:30 AM- 10:00 AM Tuesday 1:30 PM- 3:00 PM

Catalog Description:

3 Credits; An introduction to mechatronics, or the interfacing of mechanical and electrical systems. Focus is on embedded controllers and their programming, actuators, sensors, and integration of these components to create a complete functional automated mechatronic system. Gain hands-on experience with mechatronic system modelling, control algorithm design and implementation.

Course Objective:

At the completion of this course, students will be able to

- Develop an understanding of a laboratory environment and safe practice techniques.
- Become familiar with mechatronic systems, feedback control principle, the integration of the electronics with the mechanical system.
- Learn how to use data acquisition hardware, software and their interfacing.
- Learn how to use the high-level graphical programming tools to implement realtime computation tasks.
- Design and implement a mechatronics system.

Preferred Prerequisites:

ME 1014 Dynamic Systems, ME 1041 Mechanical Measurements 1, ME 1045 Automatic Controls

Website: https://learn.scupi.cn/

Topics Covered:

Topic 1: Graphical Programming Tools

Graphical Programming Tools Environment Application Programming Using Loops Data Structure Modularity

Topic 2: Sensors

Angular Displacement Distance and Proximity Pressure Contact Inertial Measurement

Topic 3: Actuators

DC Motor Modelling DC Motor Position Control

Topic 4: Control System

Inverted Pendulum Modelling Pole Placement Optimal Control-Linear Quadratic Regulator Swing-Up Hybrid Control

Spring 2021

Course Schedule:

Week	Lecture	Lab				
2	March 11 Course Introduction	March 16 Lab Safety				
3	March 18 Graphical Programming Tools	March 23 No Lab				
4	March 25 Graphical Programming Tools	March 30 No Lab				
5	April 1 Graphical Programming Tools	April 6 No Lab				
6	April 8 Angular Displacement	April 13 Lab 1				
7	April 15 Distance and Proximity	April 20 Lab 2				
8	April 22 Pressure	April 27 Lab 3				
9	April 29 Contact	May 4 Lab 4				
10	May 6 Inertial Measurement	May 11 Lab 5				
11	May 13 DC Motor Control	May 18 Lab 6				
12	May 20 Inverted Pendulum Modelling	May 25 Lab 7				
13	May 27 Pole Placement	June 1 Lab 8				
14	June 3 Optimal Control	June 8 Lab 9				
15	June 10 Swing-Up Hybrid Control	June 15 Lab 10				
16	June 17 June 22 Project Project					
17	July 24 Project Demo					
18	End of Semester					

Course Gradings:

Spring 2021

•	Studio work	20 %
•	Lab reports	40 %
•	Final project	40%
	Demonstration	
	• Peer review	10 %
	• Instructor/TA grading	10 %
	• Report	
	Peer review	10 %
	• Instructor/TA grading	10 %

Note: 4-student group for studio, lab reports and project submission, every group member receive the same score

Grading Scale:

Letter	А	A-	B+	В	B-	C+	С	C-	D+	D	F
Percentage (%)	100~90	89~85	84~80	79~76	75~73	72~70	69~66	65~63	62~61	60	<60

Class Policies:

- On-time attendance at all class activities is expected. Student is responsible for any material that was covered, and any changes to the exam dates and homework assignments announced in class.
- In general, no late assignment or make up exams will not be accepted. If you have a serious conflict with an exam schedule, you must discuss it with the instructor and **take the exam early**. Failure to contact the instructor prior to the exam or assignment due date will result in **a zero** on that exam/assignment. Exams missed due to a serious illness or a family emergency (these must be documented) will be dealt with on a case-by-case basis according to the University Policy.
- Any questions regarding the grading discrepancy should be brought up within a week of returning the homework or exam.
- Violations of academic integrity include, but are not limited to, cheating, plagiarism, or misrepresentation in oral or written form. Such violations will be dealt with severely, in accordance with University policy.

Laboratory Policies:

• **Students must attend all scheduled labs**. Absence will result in a zero on that lab report. Exceptions will be made for a valid excuse consistent with University Policy. If you cannot attend a laboratory, you must contact the instructor prior to the lab session to reschedule. While in the laboratory, all safety guidelines and procedures must be followed. Failure to comply with safe laboratory practices will result in removal from the course.