MSE 1063 – Phase Transformations and Evolution of Microstructure

Credits and contact hours (lecture/lab):	3 Credits, 3 Contact Hours (lecture)
Designated as 'Require or 'Floative' Course:	d' Required for MSE Specialization
Course description:	Phase equilibria and kinetic phenomena relevant to the origins and stability of microstructure in metallic, ceramic, and polymeric systems. Lecture topics include: application of thermodynamics to the understanding of stable and metastable phase equilibria; interfaces and their effects on stability; defects and diffusion; empirical rate equations for transformation kinetics; driving forces and kinetics of transformations; diffusional and diffusionless phase transformations.
Prerequisite and Co-requisite:	MATH 290 Differential Equations PHYS 0174 & 0175 Physics for Science and Engineering 1 & 2 MEMS 0040 Materials & Manufacturing
Textbook:	"Phase Transformations in Metals and Alloys", D.A. Porter, K.E. Easterling and M.Y. Sherif, 3 rd Ed., CRC Press, Boca Raton, FL, 2009.
Other required materials:	None
Course Coordinator:	Grace Qizhi Chen

Course Objectives:

- 1. Obtain a sound understanding of the thermodynamic and kinetic factors affecting the origins and stability of microstructures.
- 2. An ability to predict the temporal and thermal stabilities of microstructure by applying the principles of phase equilibria and kinetics.
- 3. An ability to interpret and discuss the effects of compositional change and thermal history on the stability of microstructure and kinetics of phase transformations in material systems.
- 4. An ability to solve engineering-related materials problems involving kinetic phenomena and phase equilibria.

Course learning outcomes/expected performance criteria:

- 1. Phase equilibria in unary, binary and ternary systems (70%)
- 2. Departures from phase equilibria (70%)
- 3. Microstructure evolution during cooling or heating (70%)
- 4. Source and influence of interfacial energies (70%)
- 5. Diffusion in metals and ceramics (70%)
- 6. Diffusion-controlled phase transformations (70%)
- 7. Diffusionless phase transformations (70%)

Course topics and lecture hours devoted to each topic:

<u>Phase Equilibria (~16 classes)</u>: Thermodynamics of condensed systems and criteria for equilibrium; phase rule; Gibbs free-energy diagrams and their relation to binary and ternary phase equilibrium diagrams; departures from equilibrium.

Interfaces (~6 classes): Thermodynamics of interfaces; grain boundary and interphase interfaces in solids; effects of interfacial energy on second-phase shape; effects of interfaces on phase stability; interface migration phenomena (*e.g.* recrystallization and grain growth).

Defects and Diffusion (~10 classes): Phenomenological and atomistic treatments; interstitial and substitutional diffusion; Kirkendall effect; defects, defect reactions, and diffusion in ionic compounds; activation energies for diffusion; diffusion couples; boundary conditions and applied solutions to the diffusion equation.

Phase Transformations (13 classes): Solidification: Homogeneous and heterogeneous Nucleation and growth; Hypo-eutectics and Eutectic alloy solidification; Scheil Equations; Diffusional transformations: Homogeneous and heterogeneous nucleation; kinetics of nucleation; effect of temperature on nucleation; spinodal decomposition; precipitate growth and coarsening; Johnson-Mehl-Avrami equation and transformation diagrams.

Class/laboratory schedule:

Three 50-minute classes per week.

Contribution of course to	Engineering Science:	1.5 Credits
meeting the requirements	Engineering Design:	0.0 Credit
of criterion 5:	College Level Mathematics:	0 Credits
	Basic Science:	1.5 Credits
	Realistic Constraints:	none
	Engineering Standards:	none

Mechanical Engineering and Materials Science Program outcomes addressed:

- Item How Addressed
- a. Not addressed
- b. Not addressed
- c. Not addressed.
- d. Not addressed.
- e. Not addressed.
- f. Not addressed.
- g. Not addressed.
- h. Not addressed.
- i. Not addressed.
- j. Not addressed.
- k. Not addressed.

Prepared by: Grace Qizhi Chen adapted from Charles Hua

Date: <u>28 August 2020</u>