

ME 1041: Mechanical Measurements 1

(Modifications to this syllabus may be required during the semester. Any changes to the syllabus will be posted on the course website and announced in class)

Instructor: Richard C. Stehle, Ph.D. Mechanical Engineering Faculty Office: 4-219 Email: richardstehle@scu.edu.cn Lab Engineer: Dong Liang Director of Technical Services Office: 4-208B Email: dongliang@scu.edu.cn

Office Hours: Tuesdays and Thursdays 11:00am – 2:00pm

Lecture Times: Mondays 1:50pm – 3:30pm, Room 3-105

Laboratory Times Thursdays in Room 3-120, 9:30pm – 11:30pm (Group 1) 1:30pm – 3:30pm (Group 2) 3:45pm – 5:45pm (Group 3)

Catalog Description: 3 Credits; this course is the first in a sequence of courses that pertain to engineering laboratory measurements. This course aims to provide a basic knowledge of measurement systems that include instruments used to collect data, sensors used to monitor mechanical systems, tools used to condition measurements signals and statistics for analyzing experimental data. Laboratory exposure is an important component in this course that will help prepare students for the second course in the sequence, ME 1042, in which laboratory assignments become more involved. Prereq: ENGR 0145, Co-Req: MEMS 0031, MEMS 1034

Course Objectives:

- Develop an understanding of a laboratory environment and safe practice techniques.
- Learn how to organize experimental procedure and operate laboratory equipment.
- Become familiar with common laboratory tools like power supplies, multimeters, oscilloscopes, data acquisition units, strain gages, etc.
- Learn how to effectively analyze data sets and apply statistical techniques (i.e. Uncertainty Analysis and Variance).
- Design and implement an experimental approach for hypothesis testing.

Required Text:

Theory and Design for Mechanical Measurements, 6th Edition, Figliola and Beasley, Wiley, 2015.

Course Outline:

Laboratory 1: Introduction to Instrumentation and Data Acquisition		
Data Acquisition (Ch. 2)		
Measurement System Behavior (Ch. 3)		
Laboratory 2: Temperature Sensors and Statistical Analysis of Data		
Temperature Measurements (Ch. 8)		
Finite Statistics (Ch. 4)		
Uncertainty Analysis (Ch. 5)		
Laboratory 3: Use of Accelerometers in the Measurements of Dynamic Systems		
Accelerometers (Ch. 12)		
Uncertainty Analysis (Ch. 5)		
Laboratory 4: Use of Strain Gages to Determine the Strain in Cantilever Beams		
Strain Gages, Resistance Bridges, Bridge Constraints (Ch. 11)		
Apparent Strain, Temperature Comparison (Ch. 11)		
Laboratory 5: Characteristics of Passive & Active Filters		
Filters and Amplifiers (Ch. 6)		
Impedance Matching, Aliasing (Ch. 7)		

Examination Schedule:

Midterm Exam Monday May 6th Final Exam on Monday June 10th

Exams will be during normal lecture time.

Course Grading:

Studio	10%
Pre-Lab Assignments	5%
Lab Reports	30%
Midterm Exam	15%
Group Project	20%
Final Exam	20%

Grading Scale: A 10-point scale will be used as a baseline for final grades (A, A - > 90, 89 > B+, B, B - > 80, etc.). An additional curve may be applied, as determined by the overall final grade distribution of the class. Grades of A-, B+, B-, etc. will be determined at the instructor's discretion.

Course Schedule:

Week 1	February 25 th	February 28 th
	Course Introduction, Ch. 1, Ch.2	Lab Safety Introduction
Week 2	March 4 th	March 7 th
	Ch. 2, Ch. 3	Lab 1
Week 3	March 11 th	March 14 th
	Ch. 3	No Lab
Week 4	March 18 th	March 21 st
	Ch. 8, Ch. 4	Lab 2
Week 5	March 25 th	March 28 th
	Ch. 4, Ch. 5	No Lab
Week 6	April 1 st	April 4 th
	Ch. 12	Lab 3
Week 7	April 8 th	April 11 th
	Ch. 4, Ch. 5	No Lab
Week 8	April 15 th	April 18 th
	Ch. 11	Lab 4
Week 9	April 22 nd	April 25 th
	Ch. 11	No Lab
Week 10	April 29 th	May 2 nd
	No Class	No Class
Week 11	May 6 th	May 9 th
	Midterm Exam	No Lab
Week 12	May 13 th	May 16 th
	Ch. 6	Lab 5
Week 13	May 20 th	May 23 rd
	Ch. 7	No Lab
Week 14	May 27 th	May 30 th
	Project Introduction	Project Step 1

Week 15	June 3 rd	June 6 th
	Final Exam Review	Project Step 2
Week 16	June 10 th	June 13 th
	Final Exam	Project Step 3
Week 17	June 17 th	June 20 th
	Project Testing	Project Testing
Week 18	June 24 th	June 27 th
	End of Semester	End of Semester

<u>**Class Policies:**</u> Regular class attendance is expected and encouraged. Each student is responsible for all of the material presented in class and in the reading assignments. Exams will emphasize treatment of material covered in lectures. In general, no late assignments will be accepted or makeup exams given. Exceptions will be made for a valid excuse consistent with University Policy. If you cannot attend an exam or meet a due date, you must contact the instructor prior to the exam or due date. Arrangements will be made for students on a case by case basis. (Failure to contact the instructor prior to the exam or assignment due date will result in a zero on that exam/assignment.)

Laboratory Policies: Students must attend all scheduled labs. Exceptions will be made for a valid excuse consistent with University Policy. If you cannot attend a laboratory, you must contact the instructor prior to the lab session in order to reschedule. While in the laboratory, all safety guidelines and procedures must be followed. Failure to comply with safe laboratory practices will result in removal from the course.

<u>Academic Integrity Policy:</u> "Violations of academic integrity include, but are not limited to, cheating, plagiarism, or misrepresentation in oral or written form. Such violations will be dealt with severely, in accordance with University policy. Plagiarism means representing someone else's idea or writing as if it were your own. If you use someone else's ideas or writing, be sure the source is clearly designated." It is expected that students adhere to the academic integrity policy that is presented in the Student's Honor Code of Conduct / Student Handbook.